AD=AUS3 328 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/4
ACTOR SYSTEMS FOR REAL=TIME COMPUTATION. (U) ~

MAR 78 H 6 BAKER NOOOJ.“-TS-C-DSZZ
UNCLASSIFIED MIT/LCS/TR=197

ADA0O53328

DOC FILEC

M sews

MASSACHUSETTS
LABORATORY FOR ﬁ% INSTITUTE OF {2
COMPUTER SCIENCE TECHNOLOGY

7 N

MIT/LCS/TR-197

ACTOR SYSTEMS FOR

REAL-TIME COMPUTATION

Henry G. Baker,

Bbpc

U 210 12
MAY 1 1978
LOWLIU K

; B
This research was supported by the Office of Naval
Research under Contract No. N00014-75-C-0522

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

UTION STATEMENT A

.&whp\!buc release;
* Distribution Unlimited

et " g S ” ke

T

-

B i
(69 tgitor Systems for Real-Time Computation & f

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSI
MIT/LCS/TR-197 /

A g
| Doctovel thes

it e -

=

4. TITLE (and Subtitle)

i e e B M il B e AT sty

———————

| $. TYPE-OF-REPORT. Waso
" e

)

\
/ 'l\

s
et et
s
o N

il
7. AUTHOR(s)

R
{Henry G./Baker, Jr)9/]

=

s
Sy

Ph.D. Thesis, Feb.14,1978

ORT NUMBER

RACT OR GRANT NUMBER(s)

N00014 75- c-¢522/

—

. PERFORMING ORGANIZATION NAME AND ADDRESS
MIT/Laboratory for Computer Science/
545 Technology Square

Cambridge, Ma 02139

10 PROGRAM EI...E MENT, P
REA UN

OJECT TASK
A & WORK MBE

11. CONTROLLING OFFICE NAME AND ADDRESS

¥

REPOR
Office of Naval Research iy WS) |

gartment of the N
ormation Systems

i;rogram
Arlington, Va 22217

T4. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

13. NUMBER O fs
147 @ 4 5/
1S. SECURITY ASS. (o

Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Real-time Garbage collection
Parallel List memory
Message-passing Continuations
Semantics of Parallelism
Storage management Partial or

Models for distributed computation

0. ABS‘I’;ACT (Continue on reverse side If necessary and Identity by block number)

several problems associated with implementing Actor

setting forth axioms which must be satisfied by any

Actor theory was invented by Hewitt and collaborators as a synthesis of many
of the ideas from the high-level languages LISP, GEDANKEN, SMALLTALK, SIMULA-67
and others. Actor theory consists of a group of active objects called ACTORS,
which communicate by passing messages to one another. This thesis explores

computer system design. First, we give a firmer foundation to the theory by

theory as a basis for

physically realizable -

DD , 5n'5s 1473 €oiTion OF t NOV 65 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

ETVRAY

P e -

CURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

20. message-passing system. We then give an operational semantics for this
theory by exhibiting an interpreter which is a concrete model for the theory.
Thirdly, we explore the implementation questions of mapping this conceptual
system onto current hardware in such a way that simple primitive operations

all take a (small) bounded amount of time. In particular, the issues of storage
and processor management are investigated and a real-time incremental garbage
system for both is exhibited and analyzed.

'\

I\
\\
\\

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entered)

DR —

MIT/LCS/TR-197

Actor Systems for Real-Time Computation

ACCESSION for

NTIS Vite Section

DpDC Baii section [3
UNANNSUTZTD &
JUSTIFICATION e

BY et 4
DISTRIBUTION/AVAILABILITY CODES

Dist. AVAIL. and /or SPECIAL

A

Cambridge

by

Henry Givens Baker, Jr.

March 1978

This research was supported by the Office of Naval
Research under contract number N000I4-75-C-0522.

Massachusetts Institute of Technology
Laboratory for Computer Science

mmﬁr :

DDC
(DN NP

MAY 1 1978

OLTTTS
B

Massachusetts 02139

Actor Systems for Real-Time Computation
by

Henry Givens Baker, Jr.

Submitted to the Department of Electrical Engineering and Computer Science
on February 14, 1978 in partial fulfiliment of the requirements
for the Degree of Doctor of Philosophy.

ABSTRACT

Actor theory was invented by Hewitt and collaborators as a synthesis of many of the ideas
from the high-level languages LISP, GEDANKEN, SMALLTALK, SIMULA-67, and
others. Actor theory consists of a group of active objects called Actors, which communicate
by passing messages to one another.

This thesis explores several problems associated with implementing Actor theory as a basis
for computer systems design. First, we give a firmer foundation to the theory by setting
forth axioms which must be satisfied by any physically realizable message-passing system.
We then give an operational semantics for this theory by exhibiting an interpreter which is
a concrete model for the theory. Thirdly, we explore the implementation questions of
mapping this conceptual system onto current hardware in such a way that simple primitive
operations all take a (small) bounded amount of time. In particular, the issues of storage
and processor management are investigated and a real-time incremental garbage collection
system for both is exhibited and analyzed.

T hesis Supervisor:
Carl Hewitt, Associate Pr :ssor of Electrical Engineering and Computer Science

Acknowledgments

1 would like to thank my thesis supervisor, Professor Carl Hewitt, for his support and
encouragement. Carl’s thirst for simplicity and his wide ranging interests provided an
excellent sounding board for my many half-baked ideas. Thanks also go to my readers,
Professor Barbara Liskov and Professor Stephen Ward, through whom I was able to gain a
different perspective on many topics. I enjoyed many fascinating bull sessions with
Professors Vaughan Pratt and Albert Meyer, and Dr. Peter Jessel provided me with much
personal and professional support. In spite of MIT, the graduate students and staff are
superb; many thanks to Richard Gregnblatt, Tom Knight, and Guy Steele and many others
for their help and fc;r‘{making some of the best engineered computer systems in the world.
Peter Bishop, John DeTreville, Bert Halstead, Al Mok, and Eliot Moss also made
suggestions for improvement. Finally, my warmest thanks and gratitude go to my wife,
Carolyn, a doctor in her own right, for her love, support, and patience during these past
seven years.

This thesis was typed into the MIT A.L Lab. PDP-10 "TECO" program (magnificently
maintained by Richard Stallman), using "DOC", a set of TECO macros writfen by
Vaughan Pratt. It was printed on the Al Lab. Xerographic Printer, after being formatted
by Alan Snyder’s document compiler "R".

This research was supported by the Advanced Research Projects Agency of the

Department of Defense and was monitored by the Office of Naval Research under contract
number NO00OI4-75-C-0522.

o

T TR

Table of Contents -4-

CONTENTS

ORI L T L R R A S L L A B st B e 3
AR Of CONIENIS . i oon it e s s ois e ants S SRS A AR g e o 55 4

1- Bacl‘ground © 5 0P 0 0000000000000 0000PT0000000000000RSSS 8

Bl Introdtction:: S surents B ol oot o o s vs sl L e L S ety oot e 8
K2 DNistributed COMPUING .. coooiiiisvivsnsissvnstissnnsiminsirssngodinsrshsasmaassionnesiorns ssns 9
b3 RetoiS M HaRAWARE ool e e i aon ot s s e 13
k2 Protlems with Shared MEemBRY omie it sosmsasnisssvisnmesnasssonss 16
19 Keal-Time Systemms DIESIEN (. ... oicovigionss ogirnissstassonaysssnssssorssnsssunnnssssynonssmonarys 19
16 Why Actors for Real-Time Systems Design?c.ccveviinniiiniiinieinrininnnnnennan. 22
L7 Continuation-Passing SRccossseusvessmsiissmstonsassonssssgonsn s sossssasssnsssnnsos 25
ES 'Sutline ofithe i Tihesis . oo o lh . v el et s i b e e s b e e s o 28

2. Laws for Actor Systems cecsescsesstcccssacescccccsss 30

&5 OIS ... coi.s Lanrsindibirstonits b T DA s e ss st oA By w Soha s b kA 30
22 Event-based vs. State-based Reasoning about Systemscceeeeiiinnrinnnnnn. 3
23 Events anvd ACtOr COmPUAtIONS oo oiemisssscsnssnssosisnsasssssnsbrsossnsssssvassvess 33
9 PNl OIS O EYOIEc..conconiiosisvmvismsonsposssvsvssnassussnsrbosvesnsnansnas 35
0D PRI ORI < v oooonivsuvesssvinsinsssaivsnnsnss s iosnssinimesasvesstesbamnssornssssesns 36
T2 O CHTEINED . ..o vosisversisssioivirinensmasmssbaismsssnsranipusssossbos s sssissisasin 38
A3 The Combiotth OTBRIINE «.......c..ccommimvammirosisrismesesssmssmsiesssasyassss 40
TR BRIo00inioiannivesmcversssbosmbis el e sssn b T SRR A R s Sa w0 46
245 Actor Creation and the Laws of Localitycccoveviiiiiinniiiiiiiiiiiinnni.. 19
SN0 LAWEOF ROCMIRY ...oovivvarmmmsavimsmuiiniissvermvsinsssssvessivusssosressssbsvasssnnssosvanes 51
SR NCEOF TIIREEIII .. .oovvvsirsicinbionniammirin s asmesas i v e S R LI S P RS SRR R VeSS 54
BB IS - oo ioo iimmnrasinmsvrassmiss i sarie s ore s e Ts S FEE P TV R ATASH AT SRR RS SRR S SRS 55
2.49 Busy Waiting and Fairness NN E RS TSNS AR AT S e S 57

Table of Contents -5-

24.10 Discreteness -- A Counterexample SIS SRRPPOS P DI o) S PRSI SRS B 59
25 Constructive Models or Actor TheorYciicrvemsesnssssnsissnssssnssansssnsanssnansrnss 62
PR CTNNRAE L. o hen s Son A e A SR g e S AN 4 A2 s S e e i 62
SO.E COnSUuEine MOHEIS (.o i ngeuortnnonien s dnasns ARk saSS n saias Sm A S n R g e e 63
B3 T Coll MOEY 108 ABOTE ..o cvensmiesviinsissinn s stisngabtasniosss sk praasnramiis 63
2% Sers of Ao COMPUIRLIONGcxxisoiciursssmvnsnms s sisssass sengssusmenssasicassnnssndess 75
255 The Pure Model 108 ACOFSoomvirmssssonsumsnnnssaonsssnnnssonssssnsamsssnsmansasmes 7

3. Storage Management and Garbage Collection 80

31 Advantages of List Memory over Random Access Memoryccoenineel. 81

32 Allocation Problems of Random Access Storageccoceveininiiniiiiniiinin.n. 84

4. List Processing in Real Timeccccccceceececeece.. 87

4.1 Introdaction and Previous WOtkc..ocivceisinss siosostsnaemminiisnassissossseves s ass 88
42 EhetMethod o uin L s e R e e e S e 92
43 ‘Fhe Parameter mui(silfiY . i il i snsavet cne adun wsas hosdats steanss sise s msmims s aiss 102
P4 A User Proframm SEACK oo Ji st dusmseniosseds s dvassinssesas sdanis ssesisss s saans sias 103
45 CDR-Coding (Compact List Representation)cccovvuiriinriirieniiiinniiiiiecicennas 104
e G T G T e e R C TR e RN (1)
4.7 Hash Fables and Hash LifkS —.co.coio oo iiiianiioi sioio s stves suivras sems soabbsismis s soios 112
4.8 KefCPeHRe COMRBING Lo iiiiiiidoiiovenssunius dubusnass vasudsbssi sran sossivssiosais nssmbs snenn suepin 13
4.9 The Costs of Real-Time List Processingc.ccococovmmventencrnininiinninniicncasinaien 116
FAU APPUCKEIONS. oooinnenscrivrurmine s ioninisssynenss s s ammemovets s spives vosss s asslssaam esas v oes 118

4.10.1 A computer with a real memory of fixed size 118

4I0Z A SIrTal MEMOEY COMPUTEE . .ovovcivnrrensoirsrrvinmmstes s sose s vers bossasessosrs eots 118

4103 A database management SYSEEMcccoeviuiiiniiiieniniiniiiiiei e, 119

410.4 A totally new computer architecturecoeviiiiiiiiiiniiniiiiinieiniaens 120
205 ConClusIions anmdl FUIUEE WOEK .c.ovucvnbeniimmiorenss vasiisibsvesevsosns sosnvet ssessonssnnis 121

|
{
Table of Contents -6 -
6. Garbage Coilecting Activities Incrementally 123
51 Garbage Collecting Irrelevant FULUFeSccccoeveevivieiiiniieeiiinniiiiiieniennnen. 126
: 5.2 Coroutines and GeNETALONSocoscreoscessssnsssnnsosesosslossssbsonsnssssnesssssssssssan 129
: L R T SR S s SRS e S sl SR SR 131
R he P Wt Ol RO o e e e 132
; LD A T] L el e el e S R s R e P 134
LR B TS T O s e MR e e e W s b s R S b L 134
6. Conclusions and Further Research'ccccceeee... 186
|45 LU O b SRk i et o L, e dsiades ool b Lo O T, Mo ER S S s S 138
DIOEFRPINERE B .. s . oo tdnicinin s dosns i A S SiAns drmim s s s e e s s b shma v S m s 145

Tablc of Figures sk

Fig.
Fig.
Fig.
Fig.
Fig.

<

Fig.
Fig.

Fig.

(&

Fig.
Fig.

(=

Fig.

t=

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig

5

Fig.

(=

Fig.
Fig.

FIGURES
I Event Diagram af @ GIUeR L. v vevn i anneeisieaias e vaecs ot s deie i smie olosoieoieimios 45
2. Parallel Evaluation of an EXpressioncc.ccooeiiiiiiiiiiiiiiiiiiiiiiiiiiiineenenens 45
3 Busy Waiting o @€l ... oo ionsoiraiisomns onsesbusi sisn s R R st pe e oA R an 58
4. Counter-example to the Discreteness of the Combined Order 6l
G A 0 309 S A G T T TG cntetonoanptent e se000m b Che s I a8 AT e OB B0 R0 68
6. The Cell Model for Actor Computationsccicvuenevenencenrcssmornsanniomsnonsas 72
1. Constructive Example: t=0co.ccnmmmsimosnisinsmmsmsmovssssnssise eererseeiesiesaseeinans 74
8. Constructive Example: t=10 ... ocooo i i i e s e st s s s s e 74
9. Canstructive Examplesit=6-.. .t i o e e e e e e 74
10. Constructive Examplestalo viiaisoiinsnimasmsssss sowssnsasssessusiansssenas 75
I A Cell Madelfor 8 elcoi citevumsmsrisiisiivimsnainisnssmessossssssssumssnsansuns 78
R T R R MR SR B 79
13, Fhe Chemey AROIRIIR ..ot yimisdion it ammsivnnsanssssssansssnms s shasimsssmmasasies 94
14. The Minsky-Fenichel-Yochelson-Cheney-Arnborg Garbage Collector 96
9. The Serial Keal-Fime MEtNOgcouanimpsesvasmsvonssmmisuvirmsyss vasnp suswonssannss 98
16. The Serial Real-Time List Processing System A s e e 99
1. Realk-Time System with USer Staekocccuviisssimmiinsnsisumiivasssenenvasswssasnonnas 105
18. Real-Time System with CDR-Codingccooevvnnrnnnnnnn. dvims e R e 109
19. An Infinite Sequence of SQUATEScccooiiiiiiiiiiiiiiiiiiiii e e 129
A, N L1y SEJUEIICE OF SQUATEDonevriuinrminisbsinmstsitonies s Instrissronshsonssvbusbses 130
21. Examples of the EFTHER CONStIuctcivosicimrvsmcisrmnsmmmsssrerssnsvasnsossssnyan 133

Background -8- Section 1

1. Background
1.1 Introduction

Hardware is cheap. Software is dear. These are the cliches of the computer industry
in the 1970's. The proposals in this thesis will hopefully trade off slightly higher costs in
hardware for greatly increased productivity in software. Systems savings should be
significant for several reasons. Better software productivity means less time in development
and more in the marketplace. Since this increase in productivity results in part from a more
direct mapping of ideas into programs, costs of debugging and maintenance should be less.
Because the underlying computational model (Actors) is closer to the conceptual objects
(abstract data types) of the program, fewer approximations and compromises have to be
made, resulting in more robust programs. Greater software productivity means that
software costs are less, allowing for more specialized programs since decreased software costs
can be spread over fewer installations. In many cases, any increased costs in the hardware
will be offset by the increased efficiency in the software-—-efficiency gained by exploiting
global instead of peephole optimizations.

Ample evidence exists for the efficacy of this kind of tradeoff. The ubiquity of the
operational amplifier instead of the simpler (to make), cheaper, and "more efficient”
transistor is a result of this "mind-over-matter” tradeoff. Even though no simple, elegant
operational amplifier gate exists, it is a tribute to the mathematical elegance of this device
and its ease of use in design that integrated circuits having large numbers of circuit
elements are being made to simulate operational amplifiers. The existence of the "op amp"”
allows this single concept to replace a wide variety of real devices; a conceptual economy
that simplifies synthesis procedures, analyses, and inventories. Thus, the "op amp” is a
paradigm for what can be achieved when total system design costs are fully accounted for.

Of course, now that op amps are the accepted standard, their manufacturers will
diligently search for new gates and devices to implement this mathematical model more

cheaply. Perhaps as a result of this research a single element op amp will appear which is

Introduction -9- _ Section 1.1

simpler and cheaper than a transistor. Technology would then catch up with theory.

This thesis argues that current Von Neumann computer architecture is as ill-suited to
computer systems design as the .ransistor is to electronic circuit design; it is reliable and
cheap, but a poor match to the problem domain. The system designer would like to think
about high level objects like queues, data-bases, I/O streams, program modules and
operations on those objects like “insert”, "print", "delete”. Current day computers offer only
bits, character strings, and numbers, and the size of the objects that can be conveniently
operated on is restricted by the fact that these objects must be examined or moved as a unit,
in their entirety. Thus, one can never "get off the ground”, so to speak, because the
computer is destined to work only with those trivial entities.

Actor theory was invented by Carl Hewitt and collaborators [49,85,43,44,51,50,52] in
response to these problems as a synthesis of many other ideas about abstract data types and
control structures [27,15,26,39). In this theory, actors and messages are the only two types of
objects. Actor systems exhibit behavior through actors sending messages to other actors,
which in turn send more messages. Actors can be created in the course of a computation,
and their names can be communicated in messages without sending the actors themselves in
the messages. Hence, elements of high-level data types can be modelled quite effectively as
actors which receive messages indicating the high level operations that they should
perform--perhaps on themselves. The actor model also allows for concurrent processing
because many actors can be receiving and sending messages independently of one another.
Thus, in addition to the actor theory being universal, which by itself is no great prize, it
matches very well (some of) our intuitions about how physical, computational, and

conceptual systems work. Thus, we propose to make the actor the "op amp” of computation.
1.2 Distributed Computing

In recent years, there has been a shift from the centralized serial computing system to
the distributed parallel coimputing network. The large, general-purpose computer of the

IBM System/360 style is being replaced by numerous more dedicated mini and

Distributed Computing -10- Section 1.2

microcomputers connected together by phone lines, satellite links, Ethernets, and the like.

There are many driving forces behind this shift. Since information is often produced
at a different geographic location from where it is consumed, it must be transmitted. With
the costs of both digital communication and the smallest viable computer dropping, it is
becoming easier and more economical to digitize and edit the data at its source, so that only
the editted cdata need be transmitted. Response time for editting these trivial requests can
drop dramatically when there is a computer on-site. System reliability may also be
improved, because the loss of a particular node or link in the network need not completely
shut down the system; i.e. it becomes fail-soft. ‘

But centralized computing facilities are also undergoing change. The costs of CPU’s
have continued to drop until they are only a small sliver of the computer budget. The cost
per bit of memory has also dropped at the same rate, but instead of systems now costing less,
the size of memories has grown to keep the overall system cost constant. The $64,000
question is "How to take better advantage of all this memory to increase throughput?”
Faster CPU’s are not the answer since they require more expensive high-bandwidth
memories, and memory cost is already the largest single cost in the system. Neither are more
CPUs the answer, because in the current "shared memory” paradigm they must still be
connected to the same memory, and the memory bus becomes the bottleneck.

The answer that is becoming increasingly clear is to associate some computing power
closely with each chunk of memory and replace the "shared-memory" paradigm with the
“sqciety of computers” paradigm. The hope is that the computation of each CPU will be
local enough to reduce the communication bandwidth required between memory chunks by
at least an order of magnitude. This arrangement allows for better utilization of the scarce
resource--memory--than any of the other alternatives.

The cost of the smallest viable computer going down, and its cost is going down faster
than its computing power. In other words, computing power has gotten cheaper in absolute
terms. However, the optimum MIPS/$ does not come at the fast end of the scale, with
sub-nanosecond gates, but in the relatively slow range achieved by microprocessors on a

single chip. Therefore, massive parallelism may allow performance from these chips equal

re——T—

Distributed Computing == Section 1.2

to the performance of large serial computers such as the Cray-l. Mechanisms and methods
must be found which use this additional computing power to produce the answer to a given
computing request faster.

This thesis investigates several problems which systems with large numbers of
independent computing elements must face. First, there are currently no good conceptual
models for thinking about these systems. Many people are working on this problem and

offer models with widely varying degrees of generality and efficiency; it is not yet clear

~where the tradeoff lies between these two conflicting goals. Second, while we would like to

make programs run faster on cheaper hardware, it has become clear that for a vast number
of situations, the cost of programming--especially testing and verification--is the limiting
factor. Therefore, we would like to move to a message-passing paradigm, but not give up
the hard-won gains in programmer productivity from advances in fhe serial computing art.

We attack the problem of the lack of good conceptual models through advances in the
theory of Actors. We put this theory on a firmer foundation through axioms which specify
the behaviors of actor computations. We also present a constructive model for these axioms
which can be used as a gedanken interpreter for actor computations. We argue that
event-based correctness proofs often avoid the exponential blowup of the classical "consider
all shuffles” approach.

We attack the problem of programmer productivity on this new hardware
configuration on several fronts. It has become clear that one way of increasing a
programmer’s productivity is to give her the tools to think about her problem in a high
level way. In other words, instead of programming in terms of bits, bytes, and blocks, the
programmer should manipulate pictures, accounts, warehouse inventories, etc. as "first-class”
data types, and leave it to the compiler and/or interpreter to make it all work efficiently.

Actor theory provides a clear conceptual model for these types of programmer-defined
data types since it unifies the concepts of program and data. An account actor, besides
containing the data necessary to describe the account, also has a program called a script
which allows the account to respond to high level requests such as: "what is your 60 day

balance?” or “credit account with payment of $20.95". Once these high level data types have

e ST

Distributed Computing Gl v Section 1.2

been defined, most programs wither away to a few lines of code which send messages off to
these now-active data objects to perform the real work.

However, the trouble with systems which provide user-defined data types has been
that either the programmer has to know far more about the details of the implementation
than is healthy, or she has to put up with gross inefficiency and perhaps intolerable
run-time delays resulting from the automatic management of these objects.

This thesis helps solve one of the biggest problems in systems which take

responsibility for these user-defined data types-—-the management of storage. This is

significant because as. we have argued it is not CPU time, but access to storage which is the
limiting factor in computer performance. Since currently programmers are forced to
explicitly manage this scarce resource without much help from either hardware or software,
violations of storage management policies are hard to detect and cause havoc when they
occur [I6]. We claim that a system which uniformly and efficiently managed storage would
increase programmer productivity manifold, especially in the program debugging stage, and
would even tend to do a better job at it than the programmer could.

There are two reasons for this. First, even though for any particular task the
programmer can probably do a better job of storage management than the system, the many
small domains of explicit storage management which result can lead to an overall reduction
in total system efficiency, because storage can not be easily realiocated when some domain
becomes full. For example, a stack overflows when there is still plenty of room left in the
hash table. This is the classical fragmentation problem--"storage, storage everywhere, but
not a byte to munch!” A uniform, global strategy would allow the system to allocate storage
only where and when it is needed.

The other reason why a uniform system can do a better job of storage management is
that while programmers can do a better job, they usually don’t, because they are pressed for
production, and it is not worth their valuable time to optimize storage utilization.!

By freeing the programmer from worrying about the management of storage
(allocation and freeing), it leaves her more time to worry about more important questions,

such as the correctness of the program or the scheduling of various parts of the program to

Distributed Computing -13- Section 1.2

achieve better response time. Time scheduling [24] is apparently a much harder problem
than storage management, or else it is not so well understood; hence it is more important for
the programmer to worry about the management of time than the management of storage.
(After all, human beings have many automatic systems to manage their fluids, their
energy resources, their ion balances, etc, but time scheduling for humans is still a very high
level function. In this analogy, automatic storage management functions less like the brain
than the kidney, which continually reprocesses the bodily fluids to maintain the right

environment for the more important functions.)
1.3 Actors in Hardware

A revolution is currently taking place in the computer industry. For the first time,
more CPU cycles are available than we know what to do with. This is due to the
availability of microprocessors on a single chip that can be turned out almost as fast and
cheap as copies from a Xerox machine. Some of these single-chip computers come complete
with on-board ROM (for program storage), RAM (for data storage), and I/O capability,
requiring only a power supply and some I/O devices for operation.

Yet most computation remains expensive, far more expensive than these cheap
micro-computers would lead us to believe. This is because system design and programming
costs have remained high, or even increased, with the availability of these cheap computers.

There are many reasons for this. First, many of the lessons learned at great cost on
mainframe computers are being re-learned at the micro-level; eg. high-level languages can
cut the cost of programming and maintaining large systems, yet micro-computer system

developers continue to use “assembly” languages, many without even crude macro facilities.

I. One will notice that exactly the same reasons hold for using a dynamic uniform paging
algorithm instead of manual overlays to manage programs that do not fit into primary
memory. The paging system cannot perform as well on any particular stretch of code, but it
is uniformly good on almost all of the code because it has access to dynamic run-time
information. Therefore in most situations, the paging system does much better than manual
overlays.

Actors in Hardware -14- Section 1.3

Second, program development requires a quite different environment than the running
environment of the finished prodect; it requires editors, debuggers, sophisticated file
systems, compilers for documentation, etc. Again, micro-computer development limps along
using micro-computers themselves for editing, compiling, etc, tasks which may be
inappropriate for these devices.

Third, old habits die hard. Faced with the prospect of cheap memory and cheap
CPU cycles, programmers continue to apply techniques to conserve memory and multiplex
CPU’s which are inappropriate for the current hardware/software cost ratios. Time, not
storage or CPU cycles, has always been of the essence, both in development and in product
performance, but systems are continually evaluated in terms of their hardware cost only, not
the software and opportunity costs which dominate.

Fourth, systems designers have missed seeing the forest for the trees. The real
bottlenecks in computing are in communicating information between modules and not in the
internal operation of any of the individual modules. Most CPU’s spend a considerable
fraction of their time waiting for I/O devices such as disks or in serially searching some
small region in fast memory while the rest of the fast, and very expensive, memory sits idle.
Yet the answer is not in simply adding more CPU's, because the bottleneck is still in the
communication link between the CPU and memory, not in the CPU.

What is needed is some wa.y of designing a system with a larger ratio of CPU cost to
memory cost so that a larger percentage of the memory is being utilized most of the time.

The answer given by this thesis is not to design systems using CPU’s and RAM’s as
separated components, with caches, sophisticated instruction sets, and clever algorithms to
get back some efficiency, but to design systems with large numbers of very simple actors,
each of which combines both a CPU and a small amount of RAM. These actors
communicate not by interrogating a shared memory but by sending messages to one
another. The best mechanism to transmit and deliver these messages has yet to be
developed, but a full “telephone exchange” network like a Batcher sorting net [10] looks

promising.

Actors in Hardware -15 - Section 1.3

The speed and power of actor systems depends not upon the speed and power of the
individual actors, which might be very dumb and slow, but on the massive paralielism of
thousands and millions of these devices working in concert. The clever algorithms which
have been developed for searching on serial computers to minimize the bandwidth required
between the CPU and RAM are not needed in an actor system where hundreds of CPU's
can be searching their local memories simultaneously. Even if each CPU is slow, and uses a
naive search method, the search cannot take very long because each local memory is small.

We conceive of chips in the near future on which the large majority of the area is
taken up by memory, and a CPU squeezed in around the margins. A few more years will
see large arrays of CPUs all on a single chip, giving the power of the ILLIAC-1V [9) but
with a good deal more flexibility.

The key to the current micro-computer revolution was the realization that one did not
need all the complexity of the big computer instruction sets to build a Turing universal
device that was still fast enough for many simple applications. Making the CPU simple
allowed it to fit on a single chip.

Making the CPU even simpler is the key to the next revolution. Rather than trying
to get a lot of power from one sophisticated CPU working alone, we plan to get that power
by the joint effort of many simple devices working together. Each CPU should be
universal,Z but it must also be as simple as possible so that many will fit on a chip. The
CPU does not need a clever instruction set, because it does not have to be speed or storage
optimized; e.g. ten to twenty instructions are sufficient to perform the simple tasks that are
required.

The content-addressable memory fad of the 1960's had the right idea--increase the
memory bandwidth--but its advocates were slightly misguided. They hoped that by adding

a little logic--a comparator, flag bits, etc. to a memory cell, the proper tradeoff would be

2. Each element of an array of parallel processes need not be universal for the array to be
universal, viz. Conway’s LIFE game [38] or Hennie's iterative arrays [47). However,
universality can be achieved with only a few tens of gates [7), and is therefore relatively
cheap.

v

Actors in Hardware -16 - Section 1.3

achieved. However, the protocols in a content addressable memory are too simple to make
efficient use of the communication bandwidth of the accessing mechanism. For only a "few
more” gates, one can add a complete microprocessor to each memory cell and have a
universal capability there. In this way, the messages can be much higher level than the
simple "match and respond” messages of the content-addressable memories.

There has been considerable interest in how to apply these large numbers of
processors to the solution of a single task [33]. Since the efficient utilization of a horde of
processors will require a lot of communication, sorting networks have been devised [10,87]
which allow every processor in an N-processor system to both send and receive a message
on every clock pulse. However, it is still not clear how to effectively utilize all of these
processors. Later in this thesis, we will make one suggestion ("call-by-future” or “eager

evaluation”) for keeping all of these CPU’s busy.
1.4 Problems with Shared Memory

The hallmark of the Von Neumann computer model is its homogeneous array of
read-write memory cells, addressed by a set of contiguous non-negative integers. This
memory has been abstracted out from the computer proper as a single separate RAM
(random access memory) chip in many current microcomputers. The RAM chip has a set of
address lines, a set of data lines, and a read/write line. If the chip is presented with a
non-negative integer on its address lines and a "read” signal, the contents of the memory cell
addressed by that integer appears on the data lines after a short delay. If the chip is
presented with an address and a "write” signal, the data presented to the chip on the data
lines is written into the memory cell specified by the address.

A key property of this RAM design is that only one address can be presented to the
chip at one time, and that address refers to only a single memory cell. This means that if
one memory location is being addressed, the others must remain idle. This might not be so
bad if only a few memory cells resided on a chip. However, the irend is to put more and

more memory on the same chip. A result of this trend is that the fraction of the memory

Problems with Shared Memory -17- Section 1.4

that is active at any one time is becoming smaller and smaller. This means that in a given
number of cycles, less and less of the memory stored in the device can be brought to bear on
the problem at hand.

One can counter this argument by saying that the speed of the memory chips has also
been increasing, and therefore that this will counteract the previous trend. However, the
speed is increasing at a slower rate than the capacity.3 If we consider the minimum time to
examine every location as a figure of merit for a memory module (using parallel access, if
the memory allows it), then this figure is increasing with time.

The effect of this trend is to make memory less accessible than previously. Of course, it
has been argued that few systems take advantage of anything like the bandwidth allowed
by the smaller chips, since usually only one of the memory chips is enabled at a time.
However, this fact is not something to be proud of.

One can also argue that if the same information must by accessed from many places at
the same time, it should be copied into separate chips or separate computer systems to avoid
the accessing bottleneck. However, multiple copies of memory require multiple amounts of
hardware to store. True, the actual cost of the storage itself is very small compared to the
accessing network (this is true for the entire spectrum of memory devices from tape drives to
memory chips), and therefore copying the whole memory may be no more expensive than
copying only the accessing mechanism. Regardless of these costs though, multiple copies of
information create great difficulties in keeping those copies consistent, and the
communication bandwidth required for this purpose may cost more than keeping only a
single, but very accessible, copy.

Multiport memories have been developed which achieve some degree of simultaneous
access to more than one memory location in a memory at one time; eg. there exist small
register chips with two completely independent access channels as well as large interleaved

memory banks with arbiters, each of which multiplexes access from multiple sources to a

3. The speed of a memory chip is roughly inversely proportional to its linear dimension,
while its capacity is roughly proportional to its area.

Problems with Shared Memory -18- Section 1.4

single memory bank. Computer systems using multiport memories and dual processors can
achieve a better processor to memory match and more throughput per dollar than a single
processor operating on a non-shared memory because the two slow processors are cheaper
than the single fast processor. However, the success of cache memories closely tied to CPU's
indicates that considerably more can be done in matching CPU performance to memories.
This is because accesses from a CPU to a memory are not random and independent, but
show a considerable serial correlation. In other words, many of the accesses in a given time

period tend to be close to one another. By remembering in a fast cache chunks of

‘information which are repeatedly accessed, the communication to the main memory is

reduced. This means that for a given memory bandwidth, more CPU’s (with caches) can
have access to the same memory.

The problem of multiple copies of information raises its ugly head again, though. If
multiple CPU’s each have a copy of the same information, which is the current one? The
answer we propose is to have many CPU's with caches, and to have only one copy of each
unit of information and no shared memory at all! Thus, if one processor is cacheing a
"memory cell”, and another wants to access it, it must either ask the first processor to
intercede for it, or the first processor must give it up to the second. The first type of
interaction is reminiscent of the simple access of a CPU to a memory, while the second is
reminiscent of the transferring into fast store a page of memory cells from a backing store in
a virtual memory system. The first type of interaction allows a CPU access to any memory
in the system, while the second allows the location of information in the system to be
optimized, depending upon who accesses it the most.

Thus, the complex address decoding logic of a serial computer which steer pulses from
one CPU to one of many memory locations and back can be replaced by a more symmetric

arrangement whereby many CPU'’s send messages among themselves concurrently.

Real-Time Systems Design -19- Section 1.5

1.5 Real-Time Systems Design

Consider the problem of the designer of a real-time system, a computer system with
numerous stimuli which must be responded to within strict time bounds. There are many
such systems in existence today, and their number is growing daily. Some examples of
real-time systems are an airplane’s autopilot, which responds to changes in the plane’s
course, altitude, or speed; the ignition and fuel injection controllers in some automobiles
which respond to changes in throttle position and load; and the distributed computer
message switching centers, which must process and re-direct thousands of messages per
second.

If computers and all their I/O devices were matched in speed so that a computer could
handle exactly one task at a time and finish it before starting on the next--all the while
meeting the response times required of it--then there would be no problem in allocating
either time or space on the system. The currently running task would have the whole
machine--all the processor cycles and all the memory locations--until it finished.

In a few fortunate cases, such a system design works well. However, in most cases, this
kind of a system leads either to unacceptably long response delays, or unacceptably low
utilization of the hardware (i.e. it is too expensive!). Thus, more efficient use of the system
resources can be gained through multiplexing processor cycles and sharing memory among
the different tasks. The execution of several tasks can then be overlapped with one another.

When many tasks must share the same memory, some management scheme must be
instituted in order that this sharing be done harmoniously, and with the least amount of
hogging. What mechanisms can be used to manage the sharing of memory? If all the
different tasks must share the same address space, the simplest method is fixed allocation. In
this scheme, every task is allocated its storage at system cesign time, and the task may never
use more, regardless of the distribution of stimuli the system is subjected to. This scheme is
subject to storage fragmentation because a task always has enough storage for its worst case,

whether or not all tasks can achieve their worst cases simultaneously.

Real-Time Systems Design -20- Section 1.5

A second storage management policy is that of the pool, where allocation is dynamic,
but its responsibility rests with a central facility and all tasks request storage from it in a
uniform way. However, even this policy leads to storage fragmentation. If the pool allows
for blocks of any size, it may reach a situation in which a block is needed and there is
enough free storage in total to satisfy the request, but that free storage is not available in
one contiguous block. Hence, the demand cannot be met. On the other hand, if the pool
allows only for blocks of certain sizes, then much storage is lost through rounding requests
up to the next block size.

Therefore, for a system to make maximum use of its available storage, it must be able
to re-organize the storage, i.e. it must rearrange blocks of data in memory so that free space
can be made contiguous and hence more available for allocation.

In the simple system which had only one task executing at any one time without
pre-emption, each task allocated storage as it saw fit. For example, if the task algorithm
were programmed in one of today’s higher level languages, it would use a stack for local
variables and subroutine return linkages, which would grow from one end of the linear
array of storage cells.

If the system were extended to use a well-ordered set of interrupt priorities, then it
could allow the simultaneous execution of many tasks, all sharing the same stack, so long as
the highest priority task finished before the next higher priority one resumed. However,
this policy places great restrictions on the freedom of the higher priority tasks to allocate
storage, since any object they allocate will be de-allocated before they finish. This means
that if they want to return some information--eg. a buffer of characters read in from some
external source--to some lower priority task, it is the lower priority task that must allocate
the space for the buffer. Hence storage is again fragmented, since the lower priority task
must make a worst case guess as to the size of the buffer needed.

However, a static priority scheduling policy for tasks with hard response time
constraints is known not to be optimal in the utilization of processor cycles [63). A "tightest
constraint first” policy can in many cases be very close to optimal [63), but this policy is not

a static priority scheme and would upset the delicate coordination of the LIFO storage

Real-Time Systems Design &~ Section 1.5

allocation with static priority scheduling.

For these and other reasons, such as the desire for coroutines and other control
structures more powerful than simple subroutining, one is forced to abandon the single
stack method of storage allocation as too restrictive and hard to program. But storage
management with more than one stack is a problem. With two stacks, one stack can grow
from the bottom while the other grows from the top, but how does one manage three or
more stacks?

Some systems get around the problem of the one-dimensional nature of the random
access memory through memory mapping. This scheme allows every task the illusion that it
has the whole memory to itself whereas in reality it has only a whole address space to itself.
This illusion is implemented by means of a memory map, which is a partial mapping from
the address space of each task into the real memory of the computer system. This mapping
from an address space to the real memory is not done on a word-by-word basis, because the
cost of such a map would exceed that of the complete real memory for the whole address
space". Therefore, the mapping is done in larger blocks called pages. However, again
storage becomes fragmented because whole pages of real memory must be allocated even
when only a few words of virtual memory on that page are being used.

The use of a memory map greatly reduces the amount of memory shuffling in
multitask systems since information can be contiguous in virtual memory even when it is not
contiguous in real memory. However, to reduce such shuffling to a minimum, every task
should have its own map. But maps are expensive--both in terms of their hardware cost
and in terms of the storage fragmentation they produce.

It is for these reasons that list memory5 is so valuable--not only every task, but every

4. Such a map could be implemented far more effectively as a content addressable memory,
but cheap content addressable memories have yet to appear.

5. We mean by "list memory” a memory whose cell adjacency relationships are indicated
explicitly with pointers, instead of implicitly through contiguity in the address space. We
include small objects having more than two pointers under the definition of list memory,
even though the paradigm of list memories, LISP, has only two pointers per object.

Real-Time Systems Design =122 Section 1.5

list is essentially a little map to the elements in the list, and the position of those elements
can be intertwined with elements from other lists or shared with other lists, or even moved,
so long as the "map” is updated. Since the list elements are of the same order of magnitude

as a word, there is very little storage fragmentation due to "rounding up".
1.6 Why Actors for Real-Time Systems Design?

We have already argued that the standard random access memory is far from
optimum as a memory model for a real-time system. We will argue here that the standard
process model for a task is also inadequate, hence the inadequacy of current hardware
scheduling aids such as interrupts.

Most state-of-the-art real-time systems are interrupt driven, with interrupt signals on a
vectored interrupt bus causing a context-switch (attention shift) in the CPU. Internally in
the software, however, they use a subroutine mechanism to communicate among internal
modules which uses a stack as a medium for information exchange and state-saving. On
the other hand, actor theory is a theory of message-passing among many modules, and does
not distinguish between externally and internally generated messages. It therefore unifies
the concepts of interrupt-handling and subroutining. In this theory, an external signal and
its corresponding data are packaged together into a message, which is then presented to an
actor for processing. Whether the message is processed immediately or not depends on the
scheduling algorithm, and messages generated externally are treated the same as those
generated internally by that algorithm. A control stack is not needed because each "return
address” is represented explicitly in the naming environment as a continuation. A
parameter stack is also superfluous because messages are explicitly constructed from heap
storage. The only system structure needed explicitly is the pending event structure, which
the event scheduling algorithm uses to keep track of messages in transit.

Most existing real-time systems use a hardware static priority scheme to filter out high

priority from low priority requests for service. This scheme meshes well with the use of a

stack for saving the state of interrupted processes, because the priority levels are in a

Loalaa . dAaldetont ol i o L A el e e g asea AL

Why Actors for Real-Time Systems Design? - 23 - Section 1.6

one-to-one relationship with the levels of saved state on the stack. However, as we have
pointed out, this scheme requires that long-term memory for the higher priority tasks be
provided for in advance, and this is both wasteful and awkward. It is wasteful because
storage must be provided to satisfy the largest request and not the actual request. It is
awkward, because the higher priority tasks be programmed in a manner (and perhaps even
a language) different from that of the lower priority tasks. There will be little continuity
between interrupts to a task because no state for the higher priority tasks may be stored on
the stack. Hence, constructs such as "for" loops cannot be used in the programming of these
higher level tasks because they store some temporary results on the stack.

A better system would allow every task to be programmed relatively independently of
the others, but in the same language. For example, one should not have to know the
relative priority of a task at the time it is programmed but one should be allowed to use
every construct of the programming language. A system which uses a completely separate
address space for each task has most of these properties, but the separate address spaces
make it hard for the tasks to communicate with one another. In many such systems, tasks
communicate by means of messages which are sent and received in much the same way that
information is communicated between spatially separated nodes in a distributed system.
However, transmitting messages between different tasks in the same computer system boils
down to a glorified way of copying the contents of one area of memory to another, and if a
large amount of information must be transmitted, the time to send such a message is
proportional to the length of the message, including all of its components.

It can be argued that all that copying is not necessary, if one only updates the memory
map for the receiving process to reflect the fact that a certain part of memory now contains
the message instead of what it used to contain. There are problems with this scheme
because mapping is not performed on a per-word basis, and this requires that both the
sending and the receiving buffers begin on a page boundary and occupy an integral
number of pages. Thus, the average message size will interact with the choice of page size.

The result of working out all of these details is most inelegant.

Why Actors for Real-Time Systems Design? - 24 - Section 1.6

Worse is the fact that the message buffer is now shared between two maps, and if the
sender now tries to construct a new message in its message buffer, it will destroy the message
being processed by the receiver! So mapoing the memory did not achieve what we wanted
at all. namely passing a message, but instead achieved the non-goal of passing a buffer of
memory cells.

Since we would like to construct and pass messages and not message buffers, we must
use a different buffer to construct the messages than the one the receiver is processing, and
this requires a great deal of protocol to agree on which buffers are being used and a great
deal of synchronization to change buffers. Furthermore, if variable-length messages are
being sent and the receiver does not process them in a simple FIFO or LIFO order, the
problem of managing the message buffers becomes as big a headache as any in the whole
system. The final blow to this scheme is the fact that buffers not used by one pair of tasks
in their communication may not be re-used for another communication link.

Therefore, if messages are to be sent and received with a minimum of copying and a
maximum of sharing, message buffers must be allocated from a central pool of storage
shared by all tasks. (This pool must be shared by all tasks because a task may forward a
message or point to it as a subpart of another message.) However, once message sharing
has gotten this complicated, the responsibility for reclaiming and re-using old message
buffers must be taken away from the individual tasks, and given to the central authority,
since the individual tasks are not in the best position to know when a buffer is no longer
needed. Thus, through a series of logical steps we are now back in the realm of list
processing .or the management of messages between different tasks in a real-time system.

By proposing a real-time system based on separate tasks sharing a list memory and
communicating by passing messages which are stored in the list memory, we solve quite a
few of the problems of real-time system design. However, a large problem which results
from multiplexing many tasks on a single computer remains. This is the problem of fast
context-switching. Modern "mainframe” computers tend to have a large number of registers

in the CPU which must be saved on an interrupt and restored upon resumption of that

task. In addition, many CPU’s have a cacke memory which is effectively saved and restored

Why Actors for Real-Time Systems Design? - 25 - Section 1.6

on every interrupt and resume, but perhaps not so obviously. These fast registers and
caches speed up the CPU in the execution of one task, but increase the time required to
switch tasks. Real-time systems, which must be able to respond quickly to external stimuli,
cannot afford to spend a long time saving and restoring the states of tasks, and must
therefore minimize the amount of state information needed to represent that task.

Again, computer designers have responded to this problem by implementing multiple
register sets in the CPU, one per process--in effect implementing a map from task number
to register set. In fact, the Texas Instruments 9900 single chip microprocessor takes this
scheme to its logical conclusion by keeping all its "registers” in main memory, and switching
tasks by changing the CPU register which points to the block of storage allocated for the
“registers” of the current task! In this CPU, task switching involves the saving and
restoring of only 3 words--the program counter, the task status word, and the register block
pointer.

This register mapping scheme certainly solves the problem of jong context switching
time; a processor using it can switch contexts in only a few memory cycles. However, the
whole concept of a task as a process has become more virtual. Memory has been abstracted
into an address space and a register has become just another memory cell with a shorter
name. One wonders where this process will eventually end, and whether it might be

simpler and cleaner to use another conceptual model for programming these systems.
1.7 Continuation-Passing Style

We have been arguing that the standard static-priority, stack-recursive control
structures of present day real-time systems are inadequate to deal with truly complex
situations involving dynamic priorities and co-routines. The systems that try to handle such

situations do so badly because they must allocate multiple stacks with all the problems that

they cause.

RS T p——

i
3
)

Continuation-Passing Style -26 - Section 1.7

A heading for all of these issues might be called focus-of-attention or the management
of atrention because this is what a real-time system must do to respond to its stimuli. Over
the past 15 years, researchers in the field of Artificial Intelligence have concerned themselves
very much with this issue because for most of the problems in this field, the total amount of
computation can be drastically reduced if the attention of the computer is focussed. Since
much of this type of computation involves searching, the mean search time over many
computations can be reduced if the search is performed by looking in the most likely places
first, then the next most likely, and so on.”

However, the orders of search which are easiest to program--e.g. depth-first search--do
not usually correspond to the most likely first ordering. Hence the computer must make
many shifts of context as drastically different alternatives are examined, one after another.
As a result of these needs, A.l researchers have come to the conclusion that simple recursive,
single-stack control structures are not adequate for their requirements. They have found a
need for co-routines, generators, and backtracking in order to focus the attention of the
computer program upon the currently most promising line to attack its most pressing
problem.

Landin [60), Reynolds [73], Hewitt [50), Steele [81,82,84], and others [35,86] have shown
that all of these control structures can be modelled very elegantly in a form of programming
called “continuation-passing”. In the continuation-passing style of programming, the control
stack of subroutine return points is not left implicit in the nested structure of the program,
but is made explicit by providing an additional parameter in each subroutine argument
tuple called the continuation. When a procedure A is called from a procedure B with an
argument list including C as a continuation argument, procedure A computes its value
using the normal arguments passed to it, but instead of "returning” to A, it calls C with the
computed value as an argument. But since the body of C encodes all the computations
which A would have done on the value returned by B, it is the continuation of A after the
“return” from B. If one carries this form of programming to the limit, i.e. by everywhere
calling a continuation argument instead of returning, then the return points are only pushed

onto the stack and never popped. Thus, although the control stack grows to a depth which

Continuauon-Passing Style - 27 - Section 1.7

is proportional to the length of the computation, it can be eliminated entirely since it is
never referenced again.

The control stack is not needed when programming in the continuation-passing style,
because it duplicates information already stored in the variable binding environment
(50,81,82]. However, this variable binding environment should be a tree-shaped structure to
avoid the "FUNARG" problems which would otherwise result. The tree-shaped
environments required for the continuation-passing style of programming can be easily
implemented in list storage. Since there is no control stack, all storage required by the
program can be satisfied by one mechanism--a garbage-collected heap; i.e. one uniform
mechanism provides for both the implicit storage required for binding as well as the explicit
storage requested by the programmer.

Although a little efficiency is given up by replacing the stack push operation by a
continuation creation operation plus a variable binding operation, one immediately gains
the flexibility of non-recursive control structures such as co-routines, generators, and
backtracking. Furthermore, if one writes continuations in such a way that they accept
multiple arguments, then one also gets the effect of returning multiple values from a
subroutine essentially for free. In this style, a divide subroutine can return both the
quotient and remainder from the division process without the usual kludgery involved in
handling multiple values.

Continuation-passing style makes the programming of real-time control systems easier,
since the logical event causalities of the various tasks are explicit in the text of the program
instead of being buried in some scheduler. When a routine is finished performing some
computation, it has the flexibility to go directly on to the next computation, whether or not
that computation is to be done by the routine which called it. Since the state of the control
structure is explicitly represented in the environment instead of implicitly in a control stack,
there is very little state in the CPU to change in order to respond to external stimuli
quickly. All of the tasks are on the same level, instead of having "interrupt-level” routines,
“high-priority” routines, and "background” routines. Finally, since the management of

storage for the continuations is handled by the system, the programmer need not worry

Continuation-Passing Style -28- Section 1.7

about where all of these bits and bytes are being allocated, but only whether the total

storage used exceeds the amount available.
1.8 Outline of the Thesis

Chapter 2 presents axioms for actor theory and discusses some theoretical problems
posed by them. It also presents a constructive interpreter which is capable of generating all
possible computations from an initial configuration of actors. This interpreter is not
intended to be used in a real actor system, but only to illustrate more concretely a scheduling
mechanism which is consistent with the actor axioms.

Chapters 3 and 4 discuss one of the main problems in implementing an actor system
which is subject to real-time constraints—-the allocation and recollection of storage. An
incremental garbage collection approach is advocated, and a method is exhibited which has
the additional property that all allocation, accessing and updating primitives are
time-bounded by a constant. Hence, the events in an actor system which uses this technique
can also be time-bounded.

Chapter 5 deals with a new problem that comes up in actor systems with large
numbers of activities and processors. An activity may be started on the presumption that
the result it will eventually return will be useful. However, as other activities progress in
parallel with it, this presumption may prove false, and the activity which is now deemed
useless must be stopped and its resources returned to the system. One of the best examples
of a system which generates activities which may later turn out to be useless is that of an
interpreter for an “applicative” (expression-based) language which implements
“call-by-future”, a parameter binding mechanism which is different from call-by-name,
call-by-value, call-by-need, call-by-reference, etc. Call-by-future is implemented by an "eager”
interpreter, which spawns a new activity (a "future”) for every expression which is an
argument to a procedure. Eager evaluation may result in faster response from real-time

systems, since an activity does not have to wait until its relevancy is proven before it can be

started. The Church-Rosser theorem [21,26), which ensures the invariance of the value of

Qutline of the Thesis -29 - Section 1.8

an expression in these languages regardless of the order of evaluation, can be extended to
cover this new evaluation order. Thus, in a language like LISP which has been extended
with call-by-future, the value of an expression will be independent of the evaluation order
“most” of the time, i.e. whenever the side-effects do not interfere.®

In Chapter 5, a garbage collection approach is also advocated for this problem, and a

method is found for garbage collecting "irrelevant” (useless) activities incrementally.

6. Other researchers [37,28,89] also note that languages without side-effects, eg. "pure”
LISP, are excellently suited for the purpose of representing many algorithms intended for
-xecution on a host of processors since their lack of side-effects eliminates a great source of
complexity in parallel execution. However, this kind of parallelism does not implement the
most general form of communication between activities. For example, an airline reservation
system cannot be implemented in such a language, due to its non-determinate behavior.

Laws for Actor Systems -30- Section 2
2. Laws for Actor Systems

2.1 Introduction

Although there has been much previous work on actor theory [49,85,43,44,51,50,52], the
precise semantics of the orderings of events in this theory, the modes of information
propagation, and the role of non-determinism have not been clear. As a result, any attempt
at a clean realization of the actor concepts in terms of a language was difficult, because
these fundamental issues had not yet been resolved. This chapter' attempts to clarify actor
theory by presenting some axioms that we believe must be satisfied by computations
involving communicating parallel processes. These laws restrict the histories of parallel
(actor) computations to make them physically realizable. The laws are justified by appeal to
physical intuition, and are to be regarded as falsifiable assertions about the kinds of
computations that occur in nature rather than as proven theorems in mathematics.

Since the causal relations among the events in a parallel computation do not specify a
unique total order on events, actor theory generalizes the notion of a computation from that
of a sequence of global states to that of a partial order of events. The interpretation of two
unordered events in this partial order is that they proceed concurrently.

Specifications for an actor and correctness assertions for a computation can be given
very naturally in terms of events and partial orders of events because partial orders seem
better suited to expressing the causality involved in parallel computation than the totally
ordered sequences obtained by “considering all shuffles” of the elementary steps of the
various parallel processes [74). Since inference rules can use these partial orders directly, the
number of cases in proofs is considerably reduced.2 We demonstrate some of the utility of

these partial orders by using them to express our laws for distributed computations.

. This chapter is an expansion of some of the ideas in the two papers "Laws for
Communicating Parallel Processes” and "Actors and Continuous Functionals™ by Carl
Hewitt and myself.

2. A. Holt [57] and I. Greif [43] were some of the pioneers of event-based reasoning.

Introduction -3 - Section 2.1

We present in this chapter axioms for actor systems which restrict and define the
causal and incidental relations among events in an actor computation, where an event
consists of the receipt of a message by an actor, and results in the sending of other messages
to other actors. These axioms do not postulate the existence and fairness of some global
scheduler or oracle, even though our constructive model for this theory will use such a

global scheduler to ensure that the computations it generates satisfy all of the axioms.
2.2 Event-based vs. State-based Reasoning about Systems

The applicaiion of the concept of state to sequential systems was a great advance.
This concept allowed the future behavior of a system to be completely determined by the
abstract state of the system instead of the whole past history of the system. More formally, a
state is an equivalence class of past histories of a system, all of which are equivalent in the
sense that the future behavior of the system given any of these past histories will be
identical. In some cases, the infinite (and perhaps uncountable) class of histories can be
vastly reduced to a finite set of these equivalence classes, or states. Thus, the state of a
system incorporates the "important” part of the past history, where "important” is defined as
being relevant to the prediction of future behavior.

Since the concept of global state is such an important and valuable tool to the
understanding of systems, why do we give it up? We reject it on both theoretical and
practical grounds. Relativity theory tells us that the concept of a global state for a spatially
distributed system is ill-defined in the sense that the relative order of many events, and
hence the perception of the state, varies with the position (and velocity, etc.) of the observer
of the system. Therefore, in order to consistently define a global state, we must specify an
observation point and define the time of an event as the instant that the observer observes
it. Although this can be done, one would like a more observer-independent description of
the behavior of a system. Relativity theory tells us that the direction of causality or the
direction of information flow among events is the same for all observers, and hence

diagrams of event causalities are theoretically more appropriate for spatially distributed

S

Event-based vs. State-based Reasoning about Systems - 32 - Section 2.2

systems.

Thus, although the concept of state allows us to factor out the irrelevant details of a
sequential system'’s history, partial orders of events allow us to factor out the irrelevant
details of the observer of a spatial system’s position, velocity, etc. But we would also like to
factor out the irrelevant details in the history of a spatially distributed system using a
concept similar to that of state. While quite laudable, this goal is hard to achieve. In the

case of a sequential system, the concepts of "time" and "behavior” are both well-defined;

- "time" is a linear order of transitions in the system while "behavior™ is a mathematical

function of the sequence of all inputs, or equivalently, a function of the current state and the
future inputs. But neither concept generalizes for a distributed system.

The concept of a "space-like slice” through the causal connection diagram for the
history of a distributed system may be the appropriate generalization of an "instant of time”
in a sequential system. These space-like slices are essentially collections of events that are
unordered by causality, i.e. they consist of events which could happen simultaneously.
Given such a slice, one could identify the local states for each object in the slice. If another
causal connection diagram over the same set of system elements were to contain an
equivalent slice--namely, one in which the same objects had the same local states--then the
histories of both systems (the set of events which preceded the slice) are equivalent, in the
sense that the same set of "future” events could be generated. Thus, by defining arbitrary
global states (the slices), we can regain the ability to factor out irrelevancies in the past
history of a system.

Using this technique, we can compose the histories of two systems using the same
configuration of primitive elements.

But we also reject the notion of a history of a system as being a sequence of global
states on practical grounds. Suppose that our system consists of n totally indepcndént parts,
each having a local state set of size m. Then the global state set consists of m" different
states, a number which for reasonable m and n is totally intractable if each state must be

checked for some property. Of course, the parts in any interesting distributed system will

RIS

Event-based vs. Statc-based Reasoning about Systems - 33 - Section 2.2

not be completely independent, but even so the size of the total state set will remain an

exponential function of the amount of parallelism in the system.

2.3 Events and Actor Computations

In a serial model, computations are linear sequences of global states, and each state in
the sequence determines the next state by consulting either a program text (Von Neumann
stored program computer), or a finite state control (Turing machine model). In the actor
model, we generalize the notion of computation to be a partial order of events in a system,

where each event is the transition from one local state to another.

The theory presented in this chapter attempts to characterize the behavior of
procedural objects called actors (active objects) in parallel processing systems. Actors,
messages, and events are the fundamental concepts in the theory. Actors interact through
one actor sending a message to another actor called the target (of the message). The receipt A
(and processing) of the message by the target is an event, and these receipt events are the : 1
basic steps in the actor model of computation.

New actors and messages can be created in an event in the course of a computation.*
Indeed, almost every message is newly created before being sent to a target actor.

Events mark the steps in actor computations; they are the fundamental interactions of
actors. Each event happens instantaneously, i.e. indivisibly, requiring no duration in time.

; Every event E consists of the receipt of a message, called message(E), by a target actor,

called target(E). We will often use the notation

3. In Hegel's terms, our thesis is really an antithesis to the thesis of global state, especially 43
the proving of properties of parallel systems based on global state transitions. Of course as '
Hegel pointed out, synthesis follows thesis and antithesis, and we have indicated a possible |
direction for this synthesis in the equivalencing of certain space-like slices. However, since
antithesis and not synthesis is our intent, we will argue here for a theory of events and local '
states rather than global states.

4. The creation of an actor is not itself an event; actors are created as side-effects of other
events. We denote the event which results in an actor x being created as the creation event
for x. |

r__,,__‘ v,

NP SGPN

Events and Actor Computations -3 - Section 2.3

E: [T <~~ M]
to indicate that event E consists of the receipt of message M by target T.

An event is the receipt of a message rather than its sending, because the message
cannot affect the behavior of its target actor until it is received. If the sender wishes a reply,
the message should contain as a component a continuation, i.e. an actor to whom any reply
should be sent.

Intuitively, the receipt of the message M at the target T makes M's information
available to the target for the purpose of causing additional events by sending messages to
other actors. The receipt of M by T does not in itself cause any change to either M or T;
however, T may decide after receiving M to remember all or part of M.

Due to the totality of the “receipt order” for each actor (to be defined later), we may
speak consistently about the local state of an actor. This local state is completely encoded as
‘a vector of acquaintances, which encodes the names of other actors this actor knows about at
this time. A name in this vector is just enough information to allow this actor to send a
message to the denoted actor.

Therefore, for each event E, we can define 2cqsp(T) to be the vector of immediate
acquaintances of T “just before” the event E. We now stipulate that this vector is of a fixed,
finite length; i.e. that the length of an actor’s acquaintance vector is fixed for the life of the

actor.

Law of Finite Acquaintances: For all actors x and events E such that x=target(E), the vector
acqsp(x) has finite length. For all events El. E2 such that target(El)-target(Ez)-x.
length(acqsEl(x))=length(acqsl,:2(x)).

This restriction is not meant to discourage the use of arrays with flexible bounds.
However, they cannot be primitive in our system because in order to satisfy real-time
constraints, we want all primitive operations to be (in principle) time-bounded by constants,
and all known methods for dealing with such arrays require time growing with the size of

the array.

Events and Actor Computations ~ 35~ Section 2.3

The A-expressions of Church’s A-calculus [21,26] may be modelled by actors which
receive their arguments as messages. In this case, the expressions bound to the
free variables of the A-expression x become the acquaintances of the actor modelling x. Due
to the properties of the A-calculus, those acquaintances may not change over time; i.e. if

actor y models a A-expression, then for all events El and E2 in which y is the target,

acqul(y) = acquz(y).

In order to implement interprocess communication between parallel processes, it is
necessary to use actors whose acquaintance vector changes over time. One purpose of this
chapter is to axiomatize the fundamental laws which govern the behavior of such actors.

An important example of an actor whose immediate acquaintances change with time is
a cell. A cell's acquaintance vector has exactly one element--its contents. When the cell is
sent a message which consists of the request "contents?” and a continuation (another actor
which will receive these contents), the cell is guaranteed to deliver its contents to that
continuation. When the cell receives a message with the command “store y!" and a
continuation, the cell forgets its previous acquaintance by updating its acquaintance vector
to hold y, and then informs the continuation that the command has been obeyed. The

behavior of cells will be discussed later in more detail.
2.4 Partial Orderings on Events

In order to develop a useful model of parallel computation, we have found it desirable
to generalize the usual notion of the history of a computation from a sequence of states to a
partial order of events. Thus, a history of an actor computation is a partial order which
records the causal and incidental relations among events. It is an upper bound on the
amount of parallelism that can be used in an implementation, e.g. any two unordered events
could be executing concurrently on separate processors. However, there is no requirement
that an implementation do this. An actor computation may be simulated by executing the

events in any order which is consistent with the partial order defined by the history.

T — T W ———

Activation Ordering - 36 - Section 2.4.1

2.4.1 Activation Ordering

One important strict partial ordering on the events in the history of a computation is

derived from how events activate one another. Suppose an actor X, receives a message m_ in

1 |
an event El and as a result sends a message m, to another actor Xo Then the event E2 in
which mg 1s received by Xg 1S said to be activated by El. ie. El is the activator of E2. We

call the transitive closure of this "activation” relation the activation ordering for a particular

actor computation and if EI precedes E_ in this ordering then we write

2
EIN>E2.
2.4.1.1 Laws for the Activation Ordering

It is not possible for there to be an infinite number of events in a chain® of activations
between two given events in the activation ordering of the history of a computation. Stated

more formally:

Law of Finite Activation Chains between Events: If C is a chain of events in the activation
ordering from El to E2. then C is finite.

The law of finite activation chains is intended to eliminate "Zeno machines"™-machines
which compute infinitely fast. For example, consider a PDPIO which executes its first
instruction in | usecond, its second in 1/2 psecond, its third in 1/4 usecond, and so on. This
machine not only could compute everything normally computable in less than 2 useconds,
but could also solve the "halting problem”. It could do this by simulating a normal PDPIO
running on some input, and if the simulation were still running after 2 useconds, it could

conclude that the simulated machine did not halt on that input.

5. A chain is a totally ordered subset of a partial order.

Laws for the Activation Ordering -37- Section 2.4.1.1

[t is intuitively reasonable that an actor can construct and send only a finite number of
messages in the instant that is an event. Therefore, one event can activate only a finite
number of other events. The events directly activated by an event E are called the
immediate successors of E under the activation ordering, or immediate activation successors of

E. The set of immediate activation successors of E, written succ,, (E), has the formal

definition:

succ,, (E) = {E'| E++>E’ and -3 E” such that E++>E"++>E'}.

Then we have the following law:

Law of Finite Immediate Activation Successors: For all events E, the set succ, . (E) is finite.

We also define immediate predecessors for the activation order in a manner analogous

+4>
to that used for immediate successors.

pred,, (E) = {E'| E'++>E and -3 E" such that E'++>E"++>E}.
We now postulate that an event is either an initial event, in which case it has no

immediate predecessors, or it is activated by a unique predecessor event.

Law of Unique Activators: For all events E, the set pred,, (E) contains either zero or one

element.

Each event E has at most one activator event activator(E), because message(E) is the
only message received in the event E and because :nessage(E) can only be sent by one event,
which is required to be activator(E).

What does this activation ordering look like? Since each event has at most one
activator, and no infinite preceding chains, the ordering is a forest of trees having the
initial events as roots. Since the branching is restricted to be finite at every node, each tree
is finitary.

Note that because an event has only one activator, the join part of fork-join behavior
cannot be analyzed using only the activator ordering. We will see later that having un. ue

activators forces an asymmetry in the analysis of joins because the last event to arrive at the

Laws for the Activation Ordering -38 - Section 2.4.1.1

Jjoin is the one which activates the remainder of the computation. Thus, the symmetry of a

6

“joiner” actor® is not a foregone conclusion from the basic axioms of actor theory, but must

be proven.
2.4.2 Receipt Orderings

Intuitively, the activation ordering can be identified with the notion of “causality”,
- since each event is "caused” by its activator event. However, the activation ordering is not
enough to specify the actions of actors with side-effects, such as cells. For this reason, we
introduce the receipt ordering ==>, for an actor x which records the order of receipt of
messages sent to x after having been ordered by an arbiter. Note that there are only a few
primitive actors such as cells and synchronization primitives which actually care about the

order in which messages arrive.
2.4.2.1 Laws for Receipt Orderings

The receipt ordering for each actor x is required to be a total ordering on all events
which have x as their target. This policy is enforced by arbitration, i.e. if two messages
arrive in close proximity to x, its arbiter device will arbitrarily decide which is to be

received by the actor first.

Law of Total Receipt Orders: If l:'.l " E2 and target(El) = target(Ez) = X, then either
E, ==>y Eyor Ey==>, E,
This law states that either message(El) is received before message(Ez), or vice-versa.

We note that there is no necessary relation between the order of receipt of two

messages at a target and the ordering of their activators. Suppose that events E and £2

I
both have the same target x. In a serial computation, E ==>y E, would imply that

Elo»E , but in a parallel computation, E

° and E2 could be parts of two separate processes

6. Later, we introduce a particular kind of "joiner” actor called a "gluer”.

T

Laws for Receipt Orderings -39 Section 2.4.2.1

unrelated via ++>. Furthermore, the fact that activator(El) precedes activator(E?_) in the

computation is no guarantee that El ==> because message(El) could take a longer route

X 1-12
than the message(Ez), or be delayed by an arbiter.
If an actor x is created in the course of a computation, then prior to any given

message which it receives, it could only have received finitely many other messages.

Law of Finitely Many Predecessors in the Receipt Ordering: If an actor x is created in the
course of a computation, and target(E)=x, then {E'|E’ ==>, E} is a finite set.

The above law is used to guarantee that the process of repeatedly taking the precursor
of an event will eventually stop, i.e. no receipt ordering is an infinite descending chain.

Given an event El: [T <~v~ M|] and an event E2: [T <~~ M2], there are only a finite
number of events between the two in the receipt ordering ==>1 . Stated more formally:
Corollary: For all events E , E, such that target(El)-target(Ez)nx, {EIEI ==> E ==>, 22} is
finite.

This law =liminates anomalous behavior like the following: a cell receives an infinite
sequence of "store!" commands: "store I'", "store 1/2!", store 1/4!", "store 1/8'", etc. and then
receives a “contents?” request. What is it to reply to the continuation? Zero? But zerc was
never explicitly stored into the cell!

The Law of Finite Chains in the Receipt Ordering allows us to define immediate
predecessors and immediate successors for this ordering in a manner similar to the one used
for the activation ordering. Since the Receipt Order Law guarantees that the receipt order
for each actor is total on its domain, immediate successors and predecessors are unique,
when they exist. If an event E has an immediate predecessor in ==>target(E) * it will be
called the precursor of E and will be dencted precursor(E).

One of the simplest examples of an actor which depends upon its receipt ordering for
well-defined behavior is the cell. The cell is the actor theory analogue of the program
variable in modern high-level programming languages in that it has a value which can be

changed through assignment. This value is encoded as the cell's single, changeable

Laws for Receipt Orderings - 40 - Section 2.4.2.1

acquaintance which is initialized to the name of some actor when the cell is created. A cell
responds to two types of messages, "contents?” requests and “store!” commands. When a cell
receives a request [contents? reply-to: c], the cell sends the name of its acquaintance to the
actor c¢. When a cell receives a command [store! y reply-to: c], it forgets its previous
acquaintance, memorizes y as its new acquaintance, and then sends an acknowledge message
to c.

We will discuss cells more formally in a later section.
2.4.3 The Combined Ordering

Since the events in any legal actor computation must be consistent with both the
activation and receipt orderings, they must be consistent with the transitive closui2 of the
union of the two. Hence, we introduce the concept of the precedes relation, "-->", which

combines the restrictions of both of these relations.

Definition: “-->" is a binary relation on events which is the transitive closure of the union of
the activation ordering "++>" and the receipt orderings " ==>, ", for every actor x. In

mathematical notation,

-> B (00) (V] U n.)x)‘.
X
In order for "-->" to function as a precedence relation, the next law requires that the

activation and arrival orderings be consistent. The Law of Strict Causality states that there
are no cycles allowed in causal chains; ie. no event in any history of any actor system

precedes itself. Stated more formally,

Law of Strict Causality: For all events E, it is not the case that E-->E.

This law does not follow from the properties of the activation and receipt orderings,

and counterexamples can be easily generated.

i i

- e e

The Combined Ordering - 41 - Section 2.4.3

Now the immediate predecessors and successors of an event in the combined ordering
are the unions of its immediate predecessors and successors in the constituent orderings.
Therefore, an event has at most two immediate predecessors—-its activator and its
precursor--and at most a finite number of immediate successors.

We would like to formalize the intuition that between any two events which are
causally related, there are only a finite number of events in the causal chain which links the

two. We therefore have the following law:

Law of Finite Intermediate Chains in the Combined Order (Discreteness of the Combined

Order). Given two events El and E2 in an actor computation, there does not exist an

infinite chain in --> between El and E2.
This law has a corollary which is even stronger:

Corollary: Given two events El and E2 in an actor computation, there do not exist an

infinite number of events between then in "-->"; in other words, the set.

{E| I-:l -2 E -2 22 }

is finite, for every choice of El and E2.

Proof: For any arbitrary choice of El and E2, let S denote the set described in the statement
of the corollary. Suppose that S were infinite. Now S has a spanning tree in "-->" with EI
as its root, so S contains an infinite tree. What is the maximum number of branches
protruding from any arbitrary node in this tree? The immediate successors in "-->" of a
node are the immediate successors of that node in "++>", plus the successor of that node in
the receipt ordering for that node's target, if such a successor exists. It then follows from
the Law of Finite Immediate Activation Successors that the immediate successors of a node
in "-->" must be finite, hence the number of branches in our tree protruding from any node
must also be finite. Hence the tree is finitary. But then by Kdnig's Lemma, this infinite
tree must contain an infinite chain. Since this contradicts our Law of Finite Intermediate

Chains in the Combined Order, the corollary stands.

it e e i o it i 0

WS VR

The Combined Ordering -42- Section 2.4.3

QED

While this law and corollary would seem to be a consequence of the discreteness laws
for each of the constituent orderings, plus the consistency requirement for the combined
ordering, it is in fact independent of those laws, as the counterexample in a later section will

show.
2.4.3.1 Fork-Join Behavior

In programming languages for parallel processing, it is necessary to provide primitives
by which a process can "fork" by splitting into several processes which can later "join”
together again. This allows for the processing of one branch of the fork to overlap with the
processing of the other fork, thus allowing for a reduction in the time to complete the
overall task, assuming that sufficient hardware is available for such concurrent processing.

The parallel (collateral) evaluation of the arguments for a procedure call provides a
very common and natural example of such fork-join behavior. Suppose, for example, that
we are interested in computing the value of "a2+b2" for some a and some b. In order to
reduce the computation time, we would like to evaluate a2 and b2 in parallel before

summing the results. To evaluate these two arguments to "+" in parallel, the evaluation
process must split into two sub-processes, each of which evaluates one argument. 'hen
both have been computed, they must be brought back together to form an argument pair
which is then sent to the "+" procedure. This process of combining the results of the two
parallel processes is a form of synchronization between the two processes, because more than
likely one will finish its evaluation before the other and therefore have to wait.

-We can simulate this form of synchronization with a primitive actor called a gluer,
which accepts messages from two different sources, glues them together into a single

message, and then sends them to a continuation which was supplied when the gluer was

created. A more formal description of a gluer is given below.

Fork-Join Behavior - 13- Section 2.4.31

Although a gluer requires an arbiter in front of it to keep from receiving two messages
at the same time, and hence getting confused, its behavior is symmetrical. The particular
order of receipt of those messages does not matter since the gluer does not activate any other
event until it has received messages from both of its senders, i.e. the last message received
activates the sending of the combined message to the continuation, regardless of the source
of that last message.

Gluers allow us to factor the work of an actor which receives parameters from several
different sources into two parts: a gluer which receives the different parameters and binds
then together into a single message, and the computational part of the actor which performs
the intended operation on the multiple operands which the gluer has brought together. In
an actor simulation of the data:flow computational model [28), every multiple-input operator
would require a gluer to glue one token from each input arc into one composite token which
would trigger the actual computation.

However, a gluer is different from a two-input dataflow operator because it has only
one input port through which it can process messages, and these messages are arbitrated to
arrive in a total order. Therefore, although the gluer is entirely symmetrical in that its
output is independent of the order of receipt of the two different flavors of messages, it is
inherently a serial device, like every other actor, which is capable of receiving only one
message at a time. Because of its ability to glue together different messages which arrive at
different times, i.e. it gathers together data presented to it serially, the gluer is a sort of
"serial-to-parallel” converter.’

We now analyze an example of fork-join behavior using this glueing primitive.
2.4.3.2 Formal Description of a Gluer

There is a primitive actor, called create-gluer, such that whenever it receives a message
of the form [sink:S reply-to:R), it creates a new gluer actor G, whose sink is S, and sends it

to R. G then accepts messages of two forms: [left: X and [right: y), where x and y are

arbitrary actors. If G receives a message of the form [left: x] and has previously received a

Formal Description of a Gluer - 44 - Section 2.4.3.2

message of the form [right: y), it sends a message of the form [reply:[x yllto S. If G receives
a message of the form [right: x] and has previously received a message of the form [left: y],
it sends a message of the form [reply:(x y]l to S. Thus, a message of the form [left: x] is a
“left-hand component™ and a message of the form [right: y] is a "right-hand component” of a
final message to the sink S. Note that if in a computation, m left-hand messages and n
right hand messages are sent to the same gluer, then the gluer sends m:n messages to its
sink, these m:n messages consisting of all the combinations of left hand and right hand
messages.

Figure | below shows an event diagram of the general kind of gluer described above,
while Figure 2 shows the diagram for the collateral evaluation of the expression "a2+b2",
We note that in the latter case we have two possibilities for the event diagrams, depending

upon which multiplication sub-expression returns a value to the gluer first.

7. Because of this restriction on actors that they can receive messages only one at a time,
one might conclude that they are not as powerful or as fast as a data-flow operator, which
can accept data on all its input ports “simultaneously”. The truth is, in order to physically
perform the synchronization required, whether in actor theory or dataflow, the control
information about which operands are ready and which are not must all propagate to a
single point in space at which, according to the assumptions of actor theory, the signals will
all arrive in some order and not simultaneously. Normally, an arbiter that decides which
signal arrives first takes time inversely proportional to the time difference of the arrivals.
However, since the result of a gluer is the same in either case, it should not need an arbiter
on its input; Le. since a gluer does not reveal its decision about the order of arrival, it might
be able to use a different circuit than a standard arbiter. This circuit might even be faster
because the theoretical arguments against fast arbiters would not apply to gluers. This

argument is a gross simplification of some of the ideas of quantum theory, but it should
retain some vahdity.

Formal Description of a Gluer =4« Section 2.4.3.2

Fig. 1. Event Diagram of a Gluer
’ [create-gluer <~~ [sink: S, reply-to: R))

+
v
R <~~ [reply: G}
+ +
+ +
+ +
v v
G <~~n [left: x] G<== Gean [right: yl
+
v

S <~~ [reply: [x yll

Fig. 2. Parallel Evaluation of an Expression

"xxg.x2+g " <~~ largs: [a b, reply-to: C)
+
v
create-gluer <~~ [sink: S, reply-to: R)
+
v
R <~an [reply: Gl
+
B R e n s LS o RS
+ +
v +
* <~~ largs: [a al reply-to: Gyl +
. v
+ x <~~ fargs: (b b) reply-to: Gyl
v] +
G} <~~ l[reply: a?) +
+ j v
+ Gz <an (reply: bzl
v v
G <~ [left: a2 ===>G G <~ [right: b2)

+

\J
S <~~ [reply: (a b2))
+
v

+ <~~ largs: (a b2 reply-to: C]

Formal Description of a Gluer - 46 - Section 2.4.3.2

Figure 2 requires some explanation. The original function x20y2 is sent a message
consisting of the arguments a and b and a continuation ¢ to whom the final value of aZ+b2
should be sent. The function then creates a continuation actor R which will receive the
newly created gluer and start the parallel evaluation going. The function also creates a
continuation actor S which will handle the message generated by the gluer when it has
glued the two sub-results together. The sub-processes are then started in parallel with small
subsidiary continuations G, and G, which append a "left” or a “right” indication to the
results of the first or second sub-computations, respectively. Finally, the two
sub-computations both reply to G through Gl and 02 and the glued result is passed onto
the "+" actor by means of the continuation S.

This example is more complex than absolutely necessary because we wanted to
r 02. G, and S from the

computational functions “:" and "+". In fact, from the dataflow point of view G, and 02 are

separate out the synchronization handling functions G

acting simply as the left and right input arcs to the summing operator "+".

These gluers bear an interesting relationship to the "tokens” of Ward and Halstead
[96,45). One of their fokens is an actor with two "ends”, i.e. ports at which it can receive
messages. One of the ends is the "input” port, into which messages are sent which are to be
retrieved from the other end, the "output” port. When the output port receives a message
[output-to: S), S becomes permanently connected to the token as a sink. S will immediately
receive the backlog of messages that have already been sent to the input port of the token,
and will henceforth receive every new message the token receives on its input port.
Halstead claims that tokens can simulate gluers, but not vice versa, and hence are more

primitive. See [45] for more details.
2.4.4 Activities

Hewitt [4950] has shown how many types of program control structures such as

procedure invocation, recursion, backtracking, and parallel evaluation of arguments can be

~easily analyzed as patterns of message-passing among the actor-like modules of a

Activities -47- Section 2.4.4

programming system. We would like to characterize one of the most common of these
patterns, the request-reply pattern, as a goal-directed activity.

Intuitively, a goal-directed activity starts with a request event, in which an actor
receives a message containing 1) a request for a computation, 2) some arguments for that
computation, and 3) the name of an actor--the continuation--which is to receive the reply
when it is ready. The activity then consists of all events which result from the request,
directly or indirectly, up to and including a reply event. The reply event consists of the
receipt of a reply message by the continuation actor specified in the request event for the
activity. .

More formally, let E--2 denote the set of events which follow E (including E itself) and

--2E denote the set of events which precede E (iﬁcluding E) in the computation.
E-2={E|E->E'orE=FE'}

-2E={E'|E'->EorE'=E}
Then the goal-directed activity “Q, corresponding to a request event EQ in a
computation is the set of events which follow E | but precede any reply ER to the request;

Q

ie.

Aq = Eq=z n Ut-2EI Ep s reply to Eg}

Goal-directed activities embody the notion of the nesting of activities that is produced
by the standard subroutine-calling of conventional programming languages. For example, a
request to the “tangent” procedure might result in requests to the “sine” and “cosine”
procedures, and replies from them, before the tangent of the argument is returned as the
reply to the outer request.

Several things should be noted from this definition. First, there may be no reply
whatsoever to a request, which means that the goal-directed activity consists of a single
event, the request. Since a goal-directed activity is meant to include only those events which
eventually led to the reply, there may be none if no reply was ever made. This type of

behavior is to be expected from functions which are partial, due to oversight or

Activities - 48 - Section 2.4.4

incompleteness.

However, just because the goal-directed activity is empty does not mean that no events
are occurring. Many events may be taking place which contribute to no request’s reply and
hence are wasted. These lines of computation can by definition be eliminated without
affecting the results of goal-directed activities. The problem of detecting and eliminating
this wasted computation is considered in a later chapter of this thesis.

It should also be noted from the definition that some goal-directed activities consist of
exactly two events, the request and the reply, with no intervening events. This means that
no requests to sub-activities needed to be sent in order to process the request; the answer
was available immediately. We call these a'ctivities primitive activities, because they cannot
be further decomposed; the buck stops here. Primitive activities are necessary, because they
are where the real computational work is done.

Finally. the definition for goal-directed activities allows the possibility that several
replies may be made to the continuation of a request. This is because in some patterns of
passing messages, an activity might act like a non-deterministic generator, returning every
answer which was plausible, rather than a single correct one. However, this may not be an
interesting pattern if the number of replies is unlimited, because since no acknowledgments
are required from the receiving actor to continue the replies, the pattern allows for no way

of stopping the replies.
2.4.4.1 Concurrent Goal-directed Activities

Intuitively, several activities may be proceeding in a computation at the same time.
We can formalize this through the notion of concurrent activities. Two activities are
concurrent if their request events are unordered, i.e. if their request events are concurrent.
An interesting situation arises if concurrent activities overlap, i.e. share some events. This
can happen if (and only if) the activities both involve sending messages to the same shared
actor. If two concurrent activities involve only pure actors, and these pure actors are freely

copied to avoid arbitration bottlenecks, then goal-directed activities are properly nested,

Concurrent Goal-directed Activities - 49 - Section 2.4.4.1

meaning that two activities are either disjoint, or one is a subset of the other.
2.4.4.2 Homomorphisms of Computations

The notion of activities allows one to vary the level of detail used in modelling a real
system with actors. Whereas in a crude model an activity might be primitive, with no
intermediate events between a request and the corresponding reply, a more detailed model
could use an activity with a whole host of intermediate events and sub-activities. If the
internal workings of this activity were independent from the rest of the computation, then
suppressing this extra detail should not detract from an understanding of the rest of the

system.
2.4.6 Actor Creation and the Laws of Locality

In many models for distributed computation the ensemble of processes or actors is
fixed at the time the computation is initiated. The communication patterns within this
fixed collection of objects can be ascertained (or at least bounded) before the computation
starts, and therefore every object knows at the time the computation is started exactly which
other objects it may send messages to and which other objects it may receive messages from.
As a result of this restriction, no actor names need ever be passed in messages. If an actor A
ever needs to distinguish the messages it sends to an actor B from all the other actors which
might also send messages to B, A need only include a small integer which would distinguish
it from the other actors who might also send messages to B. Then B can use this small
integer to look up in a small, constant, local table generated at initialization time to
determine who sent the message. Thus, global actor names would not be needed at all.

However, in the general actor theory presented here, new actors may be created in the
course of a computation. This ability, while adding considerably to the power of actor

systems, also adds new dimensions to their subtlety.

Actor Creation and the Laws of Locality - 50 - Section 2.4.5

The creation of new actors at run-time implies that the names for some actors are not
known at initialization time. Hence, if these new actors are ever to be sent messages by any
actor other than the one which created them, it must be possible to pass their names around
in messages.

By far the greatest use for these newly created actors is that of continuations. To
implement the standard call-return sequence in an actor system the caller of a "subroutine”
will include an additional continuation parameter in the message it sends to the subroutine.
This continuation is an actor which will receive the value computed and returned by the
subroutine; hence, it plays the role of the "return address” in less sophisticated systems.
Since in most cases, the behavior required of the continuation for a particular call is not
known until just before the call, the continuation must be newly created when the call is
made (i.e. when the parameter-continuation message is sent).

This ability to create new actors in the midst of an actor computation and pass their
names around means that not only may new nodes be added to the network connecting the
actors, but the topology of the network connecting the existing actors may change over time
as actors are introduced to each other and forget old acquaintances.8 But even worse, it
makes no sense to ask of such a network what the global connection pattern looks like even
in theory. This is because the connection pattern changes over time and because there is
relativistic ambiguity about the precise ordering of changes not already ordered by the
general precedes relation. One would have to define the relativistic notion of a "space-like
slice” through the computation and speak of the connection pattern relative to one of these
slices in order to gain a consistent meaning to the topology of an actor computation at a

given “point in time".

Definition: The target(E) and the message(E) and their immediate acquaintances will be

called the immediate participants of the event E. The immediate participants of an event

8. This does not contradict the fact that the length of an actor’s acquaintance vector does
not change over its lifetime. It only means that one acquaintance may be forgotten in the
process of acquiring a new one. '

Actor Creation and the Laws of Locality - 5l - Section 2.4.5

are exactly those actors which can be "known" in the event without the sending of any more

messages.

participants(E) = {target(E),message(E)} v acqsg(target(E)) u acqsg(message(E))
We then have the intuitive corollary of the law of Finite Acquaintances that only

finitely many objects participate in a single event.

Corollary: For each event E, participants(E) is finite.

Intuitively, the creation of an actor must precede any use of it. In order to state this
intuition as a law, we must be more precise about when actors are created. For each actor x
which is created in the course of a computation, we shall require that there is a unique
event creation(x), in which x was created.

Let created(E) be the set (possibly empty) of actors created by the event E, i.e. the set
of actors which claim E as their creation event. Note that X cannot participate in

creation(x) because x does not come into existence until after creation(x) has occurred.

Definition: created(E) = {x|creation(x)=E}.

3

Law of Creation before Use: If an actor X is created in the course of a computation and E is

an event with target x, then creation(x) --2 activator(E).
The intuition that a single event create only finitely many objects is formalized as

follows:

Law of Finite Creation: For each event E, created(E) is a finite set.

2.4.6 Laws of Locality

Qur intuition tells us that causality in the physical world is local, that there is no
“action at a distance”. The actor model conforms to this intuition in the sense that all
causality is mediated through messages. In other words, information in an actor

computation is transmitted by, and only by, messages.

Laws of Locality - 52 - : Section 2.4.6

The most fundamental form of knowledge which is conveyed by a message in an actor
computation is knowledge about the existence of another actor. This is because an actor A
must "know about” another actor B, ie. know B's name, in order to send B a message.
However, an actor can know an actor’s name only if it was either created with that
knowledge or acquired it as a result of receiving a message. In addition, an actor may send
a message to another actor conveying only names the first actor already knows; i.e. it may

*not make up a name out of thin air and send it in a message as a genuine name.

The rest of this section formalizes these intuitions as laws which legal actor
computations must obey. In an earlier section, we introduced the notion of an actor's
acquaintances and stipulated that at no time could an actor remember the names of more
than a finite number of other actors, i.e. its acquaintance vector was finite. We now want to
be more precise about how an actor's vector of acquaintances may evolve over the course of
its local time. '

An actor is given a finite initial vector of acquaintances when it is created.? We
require that every element of this initial vector be a participant of the actor's creation event,
since intuitively an actor can initially know about only its parents, acquaintances of its

parents, and its siblings. Therefore, we have the following law:

Law of Initial Acquaintances: If an actor z is the target of an event E and E is the first

event in the receipt ordering for z, then

acqsp(z) ¢ participants(creation(z)) u created(creation(z)).
The acquaintance vector of an actor may change as a result of the messages it receives.
When it receives a message, it may add to (or replace one of the elements of) its
acquaintance vector any actor's name mentioned in the message. It is also allowed to forget

acquaintances at any time. An actor can also remain pure by refusing to change its

9. Some actors are primordial; i.e. they exist at the beginning of the computation. If for
uniformity’s sake they need a creation event, the initial event which started the computation
will serve.

Laws of Locality -85~ Section 2.4.6

acquaintance vector. Most actors remember very little of what they have been told. For
example, a cell has exactly one acquaintance, its contents, which it can be asked to divulge
or replace on command.

The following law encodes the intuition that the most an actor may learn from an

event are the names mentioned in the message and the new actors created in the event.

Law of Precursor Acquaintances: If an actor z is the target of an event E and E has a

precursor in the arrival ordering of z, then

acqsg(z) c participants(precursor(E)) u created(precursor(E)).
As we have noted above, an actor is restricted in what other actors it can send
messages to. In particular, an event E may activate an event E’ only if the target of E’ is a
participant of E or created in E and each actor mentioned in the message of E' must also be

a participant of E or created in E10 This gives rise to the following law:

Law of Activator Acquaintances: For each non-initial event E,

target(E) ¢ participants(activator(E)) u created(activator(E))

and

message(E) ¢ participants(activator(E)) v created(activator(E)).

These locality laws rule out "broadcasting” protocols in which messages are sent to
every actor in the system." This is because the phrase "every actor” is not well-defined in a
model which allows the creation of new actors, but has no global states in order to pin down
precisely which actors are in existence at any given "time". Broadcasting protocols are not

inconsistent with the other axioms of actor theory, but making their semantics precise would

10. Recall that the participants of an event include the acquaintances of the target and the
message.

Il. However, a message distribution center can be built so that a single message can be sent
to every actor registered with the center.

Laws of Locality - 54 - Section 2.4.6

add a source of indeterminacy in addition to that introduced by the arbitration which

makes the receipt ordering total for every actor.
2.4.7 Actor Induction

Using the different ordering relations on an actor computation--the activation
ordering, the receipt orderings for every actor, and the combined precedes ordering--one can

prove properties about the computation through actor induction. Actor induction, a form of

" structural induction on the structure of the actor computation, consists of two parts.

Suppose that one is trying to prove property P of every event in an actor computation.
One must first prove that P is true of the initial event EO. Then if one can prove that P is
true of E, assuming that P is true of every immediate predecessor of an arbitrary event E in
the given ordering, then we may conclude that P is true of every event in the actor
computation.

For example, suppose that one wanted to prove an invariance property P about a
certain actor A in an actor computation. One need only prove that P is true of A
"immediately after"lZ A’s creation event, creation(A), and that if for every event E in which
A receives a message, P is true of A immediately after precursor(E) implies that P is true
immediately after E, then P is true of A immediately after every event in which A receives a
message. Since events in which A receives a message are the only ones which can affect A,
P is true of A for the whole computation.

This example makes use of an important special case of the following principle:

Law of Precursor Order Induction: If property P is true of the initial event EO in an actor
computation, and if for all E-«EO. P(precursor(E)) implies P(E), then P is true of every event

in the computation.

12. If a property is true "immediately after” an event E, then it is true for every immediate
successor of E in the combined ordering.

Actor Induction - 55 - Section 2.4.7

Recall that the precursor of an event E is the previous event in which target(E)
received a message, or the creation event for target(E), if E is the first event in which
target(E) receives a message. Hence the receipt ordering for every actor is a sub-ordering
of the precursor ordering. Thus, in our example using the receipt ordering for A above, we
let P be trivially true for all events in which A is not the target, and the other events (with
the exception of creation(A)) form precisely A’s receipt ordering.

Precursor order induction is useful for doing "data type inductions” to prove that
certain properties of data objects are preserved. Properties of control structures and
properties of computations which do not involve side-effects are proven using activation

order induction.

Law of Activation Order Induction: If property P is true of the initial event E’O in an actor
computation, and if for all E#EO, P(activator(E)) implies P(E), then P is true of every event
in the computation.

For example, every property of a serial computation--one in which the precedes
ordering is linear--can be proven using only activation order induction.

Complex properties or properties like synchronization which involve both the
activation and receipt orderings require full actor induction over the combined precedes
ordering.

Law of Combined Order Induction: If property P is true of the initial event l:‘.o in an actor

computation, and if for all E‘EO. P(activator(E)) and P(precursor(E)) together imply P(E),

then P is true of every event in the computation.
2.4.8 Cells

The behavior of cells can be axiomatized by positing a primitive actor create-cell,
which generates new cells upon request. These generated cells are new in the sense that
they are not shared with any previously generated cell, i.e. a change to the newly generated

cell will have no effect on previously generated cells and vice versa.

Cells -5 - Section 2.4.8

Creation: An event of the form:

E: [create-cell <~~ [initial-contents: i, reply-to: c]]

activates exactly one event, which has the form:

E,: [c <~~ [reply: n]],
where n is the newly created cell. Furthermore, created(El)-{n}. and creation(n)-EI. which
says that n is the only actor newly created in EI' Thus, each cell returned by create-cell
differs from all previously created cells because those cells have different creation events.

Use: Cells recognize only messages of two types:

[contents? reply-to: c] and [store! y, reply-to: c.

Intuitively, a cell has exactly one acquaintance, its contents, which may be queried or
updated by contents? and store! messages. We will use the notation contentsE(n) to denote
the acquaintance of the cell n for the event E in which n receives a message.

The behavior of a cell can be completely characterized in terms of this contents
function, as follows.

contentsg(n) =
if E is the first event in the receipt ordering for n
then i, where

[create-cell <~~ linitial-contents: i, reply-to: cl]
is the creation event for n

else if precursor(E): [n <~~ [store! x, reply-to: cl)
then x

else contentsprecursor(E) (n).

Contents: An event of the form:

E: [n <~~ [contents? reply-to: c])

activates exactly one event, which has the form:

E; [c <~ [reply: contentsEl(n)]].

and created(El)mreated(Ez)-ﬂ.

-

Cells - 57 - Section 2.4.8

Update: An event of the form:

El: (n <~~ [store! y, reply-to: cl]

activates exactly one event, which has the form:

E,: [c <~ [reply: donel]],
and created(El)=created(E2)=z.

2.4.9 Busy Waiting and Fairness

Busy waiting is a synchronization method used in some multiprocessing systems where
either the only communication between processors takes place through shared memory, or a
processor cannot depend on the others to "wake it up” when the others are ready to signal
it.

Consider the example in Figure | below in which a processor A ﬁmst wait for a
processor B to reach a certain point before processor A can proceed. A shared memory cell
S is initialized to a value known to both processors. Then processor A goes into a tight
loop, continually checking the contents of S for a change. When processor B is ready to
signal A, it stores a new value into the shared cell S. Processor A will notice that the value
of S has changed and will proceed out of its loop.

Busy waiting requires that the memory shared between the two processors be
arbitrated so that the one processor does not try to read the contents of the cell during the
same cycle in which the other is changing those contents. (Otherwise, the read might
produce garbage.) The axioms of actor theory imply the existence of such an arbiter.
However, an arbiter can be unfair in the sense that it always gives priority to one processor
or the other, and in the worst case, may lock out, or starve, one processor completely. Much
effort has gone into the problem of specifications for the fairness of the arbiter which
schedules the requests processed by the memory, and elaborate algorithms for fair

synchronization have been developed.

Busy Waiting and Fairness - 58 - ' Section 2.4.9

Fig. 3. Busy Waiting on a Cell
cell S init(0), %S is initialized to zero. %

% Code for Processor A. %
loop: if contents(S)=0
then goto loop

else ...proceed...

% Code for Processor B. %
... Calculates something which A needs ...

S := 1; % Tell A that we’'re done. ¥%
% Assume B is the only processor uriting into cell S. %

The actor model requires no such notion of scheduling or fairness to prove that
lockout or starvation is impossible, at least at the level of elementary message receipts.
Why? By definition, a completed actor computation has no undelivered (i.e. unreceived)
messages outstanding. Thus, every message "eventually"® gets through ("neither rain nor
sleet..”). That a message gets through within a finite number of steps follows from the "no
infinite descending chains” property of the receipt order for every actor. Therefore, between
any two messages which are received by a cell, at most a finite number of others can be
received. In our example above, between a “contents?” message from processor A and the
“store! 1" message from processor B, only a finite number of other messages will be received,
and hence the cell’s contents will eventually change. Furthermore, between the receipt of the
“store! 1" message from B and the next "contents?” message from A, only a finite number of
messages can be received and hence A will eventually detect the change in the cell's
contents. However, the “length of time" (i.e. the number of receipts processed by the cell)
required to synchronize using this simple method is not bounded by any computable
function (using oﬁly these basic axioms of actor theory). So, although busy waiting is

guaranteed to work, it may not be a satisfactory synchronization method.

13. Perhaps only after an unbounded amount of time.

Busy Waiting and Fairness - 59 - Section 2.4.9

We have just shown how the underlying message transmission mechanism of actor
theory satisfies the weakest reasonable form of fairness: every message sent is eventually
received by the target after it has received at most a finite (but a priori unbounded) number
of other messages. However, this weak fairness of the actor transmission may not be shared
by higher level protocols built using this simple mechanism. Thus, for more complex

objects such as monitors [54] or serializers [51], fairness properties must still be proven.
2.4.10 Discreteness -- A Counterexample

One question that comes up in relation to the Actor theory axioms we have presented
is whether or not they .re independent, i.e. whether any axiom can be proved using the
other axioms. In particular, the question arises as to whether the discreteness of the
precedes relation is a consequence of the discreteness of the activation and precursor
orderings.

The answer to this question is no, because there exist two finitary directed rooted trees
over the same infinite set of nodes, such that the closure of their union is a strict partial
order, yet the partial order is not discrete.

A diagram for this counter example appears in Figure 4. Figure a) shows the first
finitary tree over the nodes, figure b) shows the second finitary tree, while figure c) shows
their union. (Only a skeletal set of arcs actually appears; the rest are implied by

transitivity.) The root node for both trees is called E_, and each tree spans all the nodes.

Notice that there are no cycles in c), yet there are an ingnite number of nodes in the partial
order between EO and E. Hence c) is not discrete, even though both a) and b) are.

If we were to interpret c) as an actor computation, we could choose a) as the activation
ordering and b) as the precursor ordering. However if we examine carefully the structure
of ¢), we notice that there is something strange going on. E's activator event is El which
must be preceded by £2 in the precursor ordering. Now 22 cannot be the creation event
for targel(El) since the creation event for the target of an event must precede or be the

activator for the event. Therefore EO must be the creation event for the target of E

Discreteness -- A Counterexample - 60 - Section 2.4.10

o Continuing in this manner, we see that the

creation events for all the E.l's must be Eo. But this contradicts the axiom that Eo can

Likewise, cteation(target(Es)) must also be E

create only a finite number of different actors. Therefore, the locality and finite creation
restrictions (to be defined below) rule out this diagram as a legitimate actor computation.

(Notice that c) is almost symmetrical, so that interchanging the interpretation of a) and b)

- does not help.)

Discretengss - A Counterexample -6l - Section 24.10

Fig. 4. Counter-example to the Discreteness of the Combined Order

s e r——

Discreteness -- A Counterexample - 62 - Section 2.4.10

This counterexample shows that the discreteness of the combined order does not
necessarily follow from the discreteness of the activation and receipt orderings. The
significance of this is that if the discreteness of the precedes relation follows from the other
axioms, it must depend on more than the discreteness, rootedness, and finitariness of the two
constituent relations, and the irreflexivity of the precedes relation. :

It also provides evidencel? for the conjecture that no independent, local scheduling
algorithm can ensure the fairness of the overall actor system. In other words, a computation
produced by an actor system with only local scheduling runs the risk of being either unfair

or indiscrete.I5

2.6 Constructive Models for Actor Theory

2.6.1 Caveat

The following description of actors, messages, events, and schedules will be quite
unacceptable to the mathematician who is used to rigorously defining sets, then relations on
sets, function on those sets, etc,, because all of our sets are recursively defined in terms of
one another. We violate the standard set theoretic axioms by not starting with a few sets

like @, @ and a few operations on sets like x, (P to produce the domains for our relations

and functions. Therefore, we cannot say a priori what these containing domains are, and -

cannot use the axiom of comprehension to restrict these domains to be exactly what we
want. As a result, our models turn out to be based on proper classes rather than sets. Scott
(78,79] has considered the problem of such recursively defined domains, and his work is

considered to put such things on a proper foundation.

14. Will Clinger [23] and Validis Berzins [I14] have recently discovered that the discreteness
of the combined ordering is independent of all the other actor axioms.

15. Although arbiters form a scheduling mechanism that is locally fair, an arbiter cannot
ensure that messages which are delayed in transmission are given priority in being received
by the actor it arbitrates. (If it tried, it would have to wait arbitrarily long, since they have
no idea what messages are in transit to its actor) Therefore, this mechanism cannot
guarantee that every message will eventually be received.

PR DTN YN

Caveat - 63 - Section 25.1

Actor theory as a first order set theory is guaranteed to have a model if it is
consistent/® However, the model guaranteed by this theorem is not very useful for
understanding actors because it is produced from the purely syntactic material of the
defining axioms. We would like to produce more constructive, intuitive models which give
more insight into the nature of actors, as well as proving that this theory is consistent.

Unfortunately, due to the extreme generality of the theory, with its mutually
recursively defined sets, we are pushed to the limit in our ability to put the constructive
models themselves on a sound mathematical basis. However, we do have another
recourse--a computational model using recursively defined data-types such as LISP's
S-expressions. Even though we may be hard pressed to give a proper mathematical
interpretation to such objects, they certainly exist and we may compute with them. Thus, if
a computational model for actors can be produced, it will prove the consistency of actor

theory, assuming that LISP (or whatever such language) is consistent.
2.6.2 Constructive Models

We conceive of two computational models of actor theory, one taking cells as primitive
concepts, the other using only constructions which do not involve side-effects. While the cell
model is simpler and quite intuitive for anyone who has programmed a computer, it does
nothing to explain what a cell is, since it takes the cell as primitive.

We will first present the cell rhodel. and then the pure model.
2.6.3 The Cell Model for Actors

An actor in the cell model consists of a triple <name, script,acquaintances>, where name
is an identifier which uniquely determines the actor, script is a constant program text in

some language, and acquaintances is a constant vector of storage cells, each of which holds a

16. This does not imply its completeness, as there may be several models which disagree
with each other on unimportant details.

The Cell Model for Actors -64- Section 253

pathname (roughly a pointer) to another actor.

Names for actors serve to distinguish each actor in a computation from every other
actor. A convenient way to accomplish this is if the name of an actor is a pair
<creation,index>, where creation is the creation event for the actor, or the distinguished
indicator NIL if it is an initial actor, and index is a finite non-negative integer which
distinguishes this actor from its siblings (other actors claiming the same creation event). In
addition to distinguishing, actor names also identify, in the sense that an actor’s name
determines the actor, hence its script and its vector of acquaintance cells. (However, the
actual acquaintances themselves can only be determined relative to a given event in the
actor's receipt ordering, since they can change from one event to another.)

Scripts for actors are finite programs in some programming language which are
executed upon the receipt of a message by the actor. Upon invocation, the script may create
a finite number of new actors and messages and send them off to other actors. It may also
modify some of the cells in the local acquaintance vector to forget their current contents or
remember some new contents. It may reference various components of the message.
However, it may not loop and it may not parameterize a reference to the message or one of
its acquaintances; i.e. it may refer to acquaintance 3 but not acquaintance i. Therefore, since
the script is constant and finite, it can refer to only a bounded number of storage cells in the
acquaintance vector and hence our restriction on acquaintance vectors to have fixed, finite
lengths is no hardship.

The acquaintance vector plays a role in actor theory similar to that of the local
binding frame in current higher level language semantics. The cells of an actor’s
acquaintance vector are initialized to hold the initial acquaintances of the actor when the
actor is created. These cells may be updated as a side-effect of an event having the actor as
its target, but are completely private to the actor and inaccessible to scrutiny or change by
any other actor. In other words, the acquaintance cells are not actors themselves; they have
no names and can receive no messages. When they are updated as a side-effect of an event,
their updating is indivisibly tied up with the event; before the next receipt of a message by

the actor, the new acquaintances are well ensconced in these storage cells.

The Cell Model for Actors -65- Section 25.3

An initial configuration for an actor computation is a finite set of initial actors, i.e.
actors which are primordial since they lack a proper creation event, and a single pending
event in which an initial message is sent to one of the initial actors. An actor computation
C=<£."-->",Eo> derived from an initial configuration is a set of events &, strictly partially

ordered by the relation "-->", with a distinguished element E , which is the least element of

o
€ with respect to the ordering "-->". Each non-least element E is a quadruple <T,M,A,P>,
where T is the target actor which receives the message M in the event E, where A is the
activator event which sent M to T, and where P is the precursor event, i.e. the previous
event in T's receipt ordering (or T's creation event, if E is the first event in which T
receives a message). Finally, E’O is the event in which the initial message of the initial
configuration is received by its intended target actor; i.e. Eo“Tinitial'Minitial'N"*'N"”'

The participants of the initial event E_ include the actor target(Eo)=T which

0 initial’
has no creation event because there are no events before EO’ yet this actor must exist before
it receives a message. However, there may be other initial actors (the other participants of
EO). and EO can be conveniently assigned as their creation event without contradicting our
axioms. This convention has the advantage that no additional law is required to specify
that the number of initial actors is finite, since we already have a law requiring that only a
finite number of actors may be created in one event. If more than one initial actor were
allowed, a separate axiom to this effect would be required.

AAlthough we have described actor computations as static, already completed objects,
they can be analyzed as having been built recursively, starting with Eo from the simple
initial configuration. Eo creates some new actors, sends messages and activates new events,
which in turn send messages and activate other events, and so on. A complete actor
computation is the limit of this process; it is the final structure which is achieved after all
events have occurred and all messages have been received.

This is entirely analogous to the construction of the natural numbers from the empty
set. In this construction, we have an initial configuration--the empty set--and a process for
taking one configuration to a new one--adding the successor of an element already

obtained--and define the natural numbers as the limit of this process.

The Cell Model for Actors - 66 - Section 25.3

However, unlike the situation with' the natural numbers, wherein the process for
converting a configuration into its successor was uniquely determined, the process for
converting an actor configuration into its successor is not single valued, and the various
possibilities may even be inconsistent (unable to coexist in the same computation). This
means that there need be no single, unique actor computation derived from an initial
configuration. This non-determinism is due entirely to the arbitration required to
determine a receipt ordering for all actors. For example, if two unordered messages arrive
at an actor, the order in which they are processed is not determined, yet this order can
drastically affect the outcome. For example, if the messages were requests to an airline
system for a reservation on the last seat on a flight, the order of receipt would determine
who was assigned the seat and hence who would be affected if the plane crashed.
Therefore, we must either talk about the set of possible computations derived from an
initial configuration, or else talk of the computation as proceeding non-deterministically.

We will initially take the second approach.
2.56.8.1 Partial Computations

In order to see that an actor computation is isomorphic to the limit of a process which
starts from an initial configuration and continually adds new events, we must consider what
the intermediate states, which we call partial computations, look like.

In a partial computation, there are some messages which have been sent but not yet
received, i.e. some events have been activated, but have not yet occurred. These messages in
transit, these pending events, must be explicitly represented in the partial computations.
There are several alternatives available in choosing a representation for these pending
events, such as sets, queues, etc., but we will ignore this problem for a moment.

A partial computation is a triple <€,-->,P>, where £ is the set of events which have
already occurred, "-->" is the precedence relation built up so far among those events, and P
is the “pending event” structure which represents the activated events that have not yet

occurred. The initial configuration is then <{}.{}.P0>. where Po represents the single

Partial Computations -67- Section 2.5.3.1

pending event wherein the initial actor is sent an initial message.

The process which takes a partial computation te a larger computation we call the
interpreter. Intuitively, the interpreter removes a pending event from the pending event
structure and causes it to occur, ie. it adds to to the event set and adds the appropriate
edges to the precedes relation. In so doing, it adds to the pending event structure all the
new events that the occurring event activates. If the pending event structure becomes
empty, ie. if there are no pending events, then the computation is complete and the
interpreter reaches a fixed ‘point.

In many cases, however, the computation will be infinite and the pending event
structure will never become empty in any finite amount of time. We would like to consider
all (finite or infinite) fixed points of the interpreter for an actor system accessible from the
initial configuration of the system to be the actor computations which are derived from that
initial - configuration. Since in general the individual steps of the interpreter are
non-deterministic, there will be many of these different fixed points.

Serious questions arise about the fairness with which the interpreter selects events
from the pending event structure. If the interpreter picks an element from the pending set
randomly and independently at every stage, then the probability that a pending event will
*7ver occur approaches zero. In other words, in the space of all possible interpreter choice
sequences, the set of unfair sequences has measure zero. However, the set of unfair
sequences is not necessarily empty! Therefore, this "random” interpreter cannot be a model
for actor computations because it satisfies our actor axioms only probabilistically; i.e. it
admits of unsatisfactory computations, although they have only measure zero in the whole
set of generated computations.

Suppose now that we choose a strict first-in, first-out (FIFO) queue for our pending
event structure. Then an event, once activated, will never have to wait more than a finite
number of steps to occur, since the length of the queue is always finite, and the pending
event cannot lose its place in the queue (i.e. be pre-empted). This model satisfies the axioms
of actor theory, in particular the discreteness axiom for the precedes relation, and therefore

is a logical model of the theory.

Partial Computations - 68 - Section 25.3.1

Ward and Halstead [96] propose the FIFO model for the pending event structure of a
restricted actor theory in which the precursor ordering is always implied by the activation
ordering. This restricted actor theory requires no arbiters since there is no freedom in the
order of receipt of messages.” Since the FIFO model is non-pre-emptive, an event, once
scheduled, will occur within a finite number of interpreter steps. Thus, the limit of this
process will produce the (essentially unique) completed actor computation which follows
from the given initial configuration. Figure 5 shows a FIFO event scheduling algorithm.

However, a strict FIFO queue rules out other modes of behavior, other scheduling
strategies, which are also acceptable models of actor theory. For example, using the FIFO

model makes the interpreter and hence every computation strictly deterministic, since there

Fig. 5. FIFO Actor Interpreter

t := O % Keeps track of last scheduled event. %

S(8) := EB: % Initial event is only one initially scheduled. %
for i=0 to o % The clock ticks forever. %

do begin

let T=target(S(i)), M=message(S(i)), A=activator(S(il));
% Find precursor for this event by scanning back. %
for j=i-1 by -1 until target(C(j))=T or C(j)=creation(T)
do nothing;
let P=C(j); % This is the precursor event for the current event. %
let E=<T,M,A,P>;
% Update Partial Order with thie new event. %
PO := PO U {A-->E, P-->E};
% Compute new events to schedule. %
let eventlist=match(M,T,P);
% Schedule these neu events. %
for eceventlist
do begin
t = t+l; % Compute next open slot. %
% Schedule it there with E as the activator. %
S(t) := <target(e),message(e) ,E>;
end
C(i) := E % Event E is complete. %
end;

17. They make the additional assumption that if an event dispatches two messages, they
are appended to the FIFO queue in the order given by the script of the event’s target.

Partial Computations -69- Section 25.3.1

Is never any ambiguity about the order in which pending events are processed. Since actor
theory requires only that all messages arrive in a finite amount of time, but prescribes no
other conditions on the order of arrival of those messages (except when the receipt of one
message precedes the sending of another), there may be computations derived from an
initial configuration which are not isomorphic to that generated by the FIFO model, yet
these computations still satisfy the axioms of the theory. Therefore, we would like a model
for actor theory which is more general, ie. which produces more computations than the
FIFO model, without producing any unfair computations.

The scheduling model for actor theory presented below has the appropriate
characteristics.

Our scheduling modell3 represents the pending event structure by an instantaneous
schedule, which posts the scheduled time of execution for every pending event. At the time
an event is activated, a time slot is non-deterministically chosen so as not to conflict with
any previously scheduled events. This non-deterministic strategy purposely leaves gaps in
which events may be scheduled which are activated later. It also retains the property that
once a pending event has been scheduled, it may not be pre-empted or re-scheduled.
Therefore, at the time it is activated, a pending event is given a bound on the amount of
time it must wait before it is executed. Hence, a pending event is guaranteed not to wait
forever for execution, and thus this scheduling strategy is free of individual starvation
(fair).

An instantaneous schedule consists of a non-negative integer i, and a pair of partial
functions Ci. Si' whose domains are subsets of the non-negative integers. The integer i
denotes the current event number, a crude clock which indicates how many cycles the
interpreter has been through since it started with the initial configuration. The first partial
function C, has the set of events £ as its range, and for every interger O<j<i, Ci(j) is the

event which occurred at time j, if any. The second partial function Si has the set of

I18. Some of the ideas for this scheduling model were formed during conversations with
Eliot Moss.

T

Partial Computations -70 - Section 2.5.3.1

pending cvents as its range, namely triples of the form <T,M,A>, where T is the target of
the message M which was sent as a result of the activating event A, and Si(j) denotes the
pending event which is scheduled for time j, if any.

Now since the intended interpretation of the instantaneous schedule <i,Ci,Si> is that
the events in the range of Ci have already occurred, while those in the range of Si are only
scheduled, we need a formal consistency requirement on instantaneous schedules which
ensures that this is the only interpretation. This consistency requirement states that an
event occurs at time j if and only if it was scheduled to occur at time j. More precisely, for
all j such that 0<j<i, either Si(j) and Ci(j) are both undefined, or they are both defined and
they refer to the same event, ie. target (Si(j))=target(Ci(j)). message(sl,(j))-message(Ci(j)).
and activator(Si(j))=activator(Ci(j)).

Our interpreter I takes as input an instantaneous schedule whose clock reads time i
and non-deterministically produces an instantaneous schedule for time i+l. Thus, the
computations which can be derived from an initial schedule S0 can be characterized by the
various limits 1"(80) as n approaches infinity.

An interpreter step consists of one of the following two cases. Let <i,Ci.Si> be the
input instantaneous schedule. If Sl(i) is undefined, then no event is scheduled for time t=i,
so return the instantaneous schedule <iol.Ci,Si>. In other words, the interpreter idles on this
step.

If Sl(i)=<T,M.A>. then for time t=i an event is scheduled in which the actor T receives
the message M which was sent in the event A, i.e. A activated this event. To complete the
current event, we need its precursor. The precursor can be found by searching the C-vector
from t=i-1 backwards to creation(T) until either an event P is found such that target(P)=T,
or creation(T) is reached, in which case let P=creation(T). In either case, let the new event
E be <T .M ,AP>.

Now the script for the actor T will tell how message M is to be interpreted using the

current acquaintance vector of T, i.e. the script will indicate what new actors to create, what

new events to activate, and how to update T's acquaintance vector. The script creates these

Partial Computations -n- Section 25.3.1

new actors, updates T's acquaintances, and produces a finite list L of n pairs <Ti'Mi> which
specify the events which E should activate. The interpreter must now schedule these
pending events by choosing a sequence <t|,t2,...,tn> of distinct non-negative integers such
that tj>i and Sl,(tj) is undefined, for all j, Isj<n, where n is the length of the list L. The
number tj indicates the time at which the pending event l..j should occur, which may not be
earlier than the current event, and which may not conflict with a previously scheduled
event.

Once these events have been scheduled, this step of the interpreter is done, and it
returns the instantaneous schedule

n
<i+l, C.u<i,E>, S .u U{<t.. <T,M,, E>>} >
! : jo! ¥
as its result. The interpretation of this interpreter step is that event E has occurred at time
i, and activated the n events which are scheduled at times tj' with targets Tj' messages Mj'
and activator E.

Figure 6 exhibits such a scheduling model for actor computations which uses arrays of
cells for acquaintance vectors.

Our scheduling model is not the most efficient possible for generating the legal actor
computations from an initial configuration. In particular, the pending event schedule could
probably be more efficiently implemented with a priority queue [1,92], which would allow the
interpreter to skip over empty slots when nothing is scheduled. However, our model is

simple and precise, and so it serves our purpose here.
2.5.3.2 An Example of Constructive Interpretation

We would like to illustrate the operation of the interpreter with a trivial example.
Consider an actor system with only two actors, A and B. In the initial event for the
computation of this system, actor A sends actor B two different messages, M and M’
Because of the totality of the receipt ordering for actor B, the messages must arrive either in
the order M, M’ or in the order M’, M.

An Example of Constructive Interpretation - 72 - Section 2.5.3.2

Fig. 6. The Cell Model for Actor Computations

for i=0 to o % The clock ticks forever. %
do if S(i) is defined % Is there an event scheduled for time i? %
then begin

let T=target(S(i)), M=message(S(i)), A=activator(S(i));
% Find precursor for this event by asking the target. %
let P=if most_recent_target_event(T) is defined
then most_recent_target_event(T)
else creation(T);
% Create the event node. %
let E=<T,M,A,P>;
% Update Partial Order with this new event. %
PO := PO v {A-->E, P-->El};
% Apply script of target to message to produce neuw events and
update acquaintances of target. %
let eventlist=apply(script(T),M,acquaintances(T));
% Schedule activated events. %
for e ¢ eventlist

do begin
let j=i+guess(); % Guess a time in the future. %
uhile S(j) defined
do ji=j+1; % find first free slot thereafter. %

% Schedule e with E as activator. %
S(j):=<target(e),message(e) ,E>
end

C(i) := E;

end;

A trace of the scheduling model on this computation is given in Figures 7-10. The
interpreter starts the whole computation with only one event scheduled, the event in which

A receives a message M to initiate the rest of the computation. To execute this event, the

0
interpreter scans backward through the previously completed events (of which there are
none) to find the most recent event in which A received a message. There is none, since
this is the first event, so this event will have no precursor event. The first event Eo is then
created having A as the target, MO as a message, NIL as the activator and NIL as the
precursor. This event is then entered into the partial order with no relationships to any
other events because there are no other events yet. The interpreter then matches M0 to A's
script to determine what new actors to create and what new messages to send in order to
activate more events. Since A is to send two messages to B upon receipt of MO’ the

interpreter schedules a time for the occurrence of these two future events, where B receives

e he il atarky

An Example of Constructive Interpretation - 73 - Section 2.5.3.2

M and B receives M'. Suppose for example that the pair <B,M> is scheduled first for time
t=6. This means that there are still empty slots in the schedule for times t=1,2,3,45. When
the interpreter schedules the pair <B,M'>, it can choose one of these empty slots or a slot
after t=6, but it cannot choose the slot at time t=6 because <B,M> is already scheduled then.
Suppose that the interpreter chooses the slot t=5 for the pair <B,M'>. Both new events are

scheduled by registering them in the "S" vector. Finally, the event E_ is registered in the

0
"C” vector, indicating that its execution is complete and the first cycle of the interpreter is
done.

The next four cycles of the interpreter (with t=12,3,4) do nothing because no events are
scheduled at those times. On the fifth cycle, the pair <B,M'> is scheduled to occur and the
interpreter looks back through the "C" vector for events with B as a target. It finds none,
and since B was not created in the course of a computation, there is no precursor for this
event, either. The event l:'.l is created having B as its target, M’ as its message, Eo as its
activator, and NIL as its precursor. This event El is entered into the partial order with the
single relationship EO-->El because EO activated El' Then the interpreter matches B's script
against the message M’ to decide what new events El should activate, and these events are
scheduled. EI is registered as complete, and the fifth interpreter cycle is done.

On interpreter cycle t=6, B is scheduled to receive M. The interpreter scans backward
through the completed event list "C" looking for events having B as a target. The first
such event it finds is El, which it just completed. EI becomes the precursor event for the
. new event E2. which has B as its target, M as its message, and Eo as its activator. The
partial order is updated to contain the new event 52 and the new relationship l-:o-->l:'.2
(because E, activated E2). and the relationship I~ZI-->E2 (because El is the precursor of 22).

Any events activated by 1-22 are then scheduled, and the computation proceeds from there.

Sets of Actor Computations Section 2.5.4

Fig. 7. Constructive Example: t=0

S: @ | <A,Mg.NIL> | C:
1] |
2| |

PO:

onstructive Example: t=I
<A, Mg,NIL> |

Eg = <A,Mg.NIL,NIL>
| .

<B.ﬂ'.Ee>
<B.N,Ea>

C
%]
1
2
3
4
S
6

|
|
|
I
I
|
|

ONHsWUN- O

Constructive Example: t=6

<A,Mg,NIL> | C: Eg = <A,Mg,NIL,NIL>

I

|

| r ———
: <B,N',Eg> E, = <B,N',Eg.NIL>
I

<B.H.E0>

NO s WN- O
NONSWN-®

R T Y e

R TP T—

Sets of Actor Computations -75 - Section 2.5.4

Fig. 10. Constructive Example: t=7

S: B | <A, Na.NlL> | C: 0 | E = <A.N9.NIL.NIL> |
| === | 1] S |
2 | ——-= | 2 | — |
3| oo | 3| ---- |
L 4 | g |
S | <B,M,Eg> | S | Ey = <B,M',Eg.NIL> |
6 | <B.N.Ea> | 6 | Ez = <B.".EG.E1> |
7. 97 | 71 |
t: 7 PO: Eg
++
+ o+
+ +
v v
El ==>B E2

2.5.4 Sets of Actor Computations

‘We initially made the assumption that our interpreter I nondeterministically produced
a new instantaneous schedule from an old one. One can define a corresponding interpreter
I' which operates on sets of instantaneous schedules® For every instantaneous schedule S in
the input set, I produces all possible schedules I(S) in the output set. Furthermore, for
every instantaneous schedule S’ in the output set, there exists a corresponding input
schedule S, such that S’ is one of the schedules derived in one step from S by I. Thus, I is
a single-valued function on the power set of finite instantaneous schedules.

The complete set of actor computations derived from the initial schedule S may be

0
described as the limit of I'"({SO}) as n approaches infinity, i.e.

C = limit l'"({S .

N-ew
Thus, C is a set of instantaneous schedules which have become infinite in all possible ways.

19. G. Plotkin [70] has investigated powerdomains, similar to power sets, which can be used
to make our recursively defined sets of schedules well-defined.

Sets of Actor Computations -6 - Section 2.5.4

We claim that 1) every computation in C is a legitimate actor computation in the sense
that it satisfies all of the actor laws; and 2) there are no legitimate actor computations
derived from SO that are not in C. Hence, we claim that our interpreter is a model for actor
theory.

An analogy to various subsets of the real numbers might help in understanding this
limiting process. Suppose, for example, that we had a process which produced a string of
digits in the range 0-9. Suppose further that this process operated non-deterministically at
each step to choose the next digit to be output. If we interpret the digits output as
successive fractional digits of a real number, then the limit of the process would be the set
of all real numbers in the range [O.I].20

Suppose now that we have an actor system which is simulating the “fair merge”
operator of dataflow systems. This operator accepts inputs from two different sources, and
produces an output stream consisting of the merged sequence of inputs. However, if this
merge operator is to be "fair”, it may not decide after a certain time to ignore all inputs from
one of its sources and take inputs only from the other. If we code the decisions of the merge
operator as a finite string of 0's and I's, where a 0 means that the cofresponding output
came from the left input source and a | means that the corresponding output came from the
right inplit source, then the fairness criterion means that the decision string may never
terminate with an infinite string of 0's or I's.

The set of computations derived from such an actor simulation of a fair merge
operator will be in a I-l correspondence with the set of infinite strings of 0's and I's. Again
interpreting these strings as infinite fractions between 0.0 and 1.0, but this time coded in
binary, we have a correspondence between the set of computations and the set of
non-terminating binary fractions. Since the terminating fractions are only of measure zero
in the set of all real numbers, most arbitrary merge sequences are fair. However, the set of

actor computations of this simulation is carefully constructed to avoid the non-fair

20. This example requires only finite branching at each point, whereas our constructive
interpreter effectively branches countably infinitely at every step.

Sets of Actor Computations ~ = Section 2.5.4

sequences.

Since the arbiter on the front of every actor is essentially a fair merge operator which
merges the unordered messages from a wide variety of sources into a single totally ordered
sequence, the set of computations for almost every actor system must be constructed with
same subtlety as the set for the fair merge operator in order that they satisfy the discreteness

requirements of the precedes ordering.
2.5.4.1 Reduced Sets of Actor Computations

Once the set of all actor computations which can be derived from an initial
configuration has been constructed, the information about the pending event structures and
the instantaneous schedules can be thrown away. The pending event structure is not
needed because in the limit, there are no pending events. The instantaneous schedule is
also no longer needed because all it does is encode an existence proof that the precedes
order is capable of a monotonic embedding into the non-negative integers; the particular
embedding does not matter. Thus, the set of all actor computations is partitioned into
equivalence classes of instantaneous computations that share the same partial orders. Hence,
this partitioned set is isomorphic to the set of completed computations (partial orders) which

follow from the initial configuration.
2.6.6 The Pure Model for Actors

We would now like to give a "pure” model for actors in which the acquaintances of an
actor do not have to be kept in storage cells which are updated as the computation
progresses. We do this to avoid the circularity of explicating cells in terms of acquaintance
vectors of cells. We eliminate these cells (at some cost in “efficiency”) by re-computing on
each interpreter step what the current contents of the target's acquaintance vector should be.
This is done through a procedure which recurses backwards along the target's precursor
chain and when it reaches the target's creation event, it gets the target’s initial acquaintance

vector. The procedure then unwinds by going forward along the precursor chain,

o

The Pure Model for Actors -78 - Section 2.5.5

re-executing enough of the target's script at every event in order to compute the new
acquaintance vector for the next event. Upon completion of this process, the target’s current
acquaintance vector is available so that the target’s script can receive the current message.

We illustrate this process by showing how it works in the case of a simple storage cell.
Recall that a storage cell has exactly one acquaintance--its contents. It is created with some
initial contents, and it responds to two types of messages--"contents?” and “store!".
Conceptually, in the cell model for actors, when a storage cell receives a “contents?” message,
it simply looks in its acquaintance vector and delivers up what it finds there to the
continuation which was supplied. Again, in the cell model, when the cell receives a "store!”
message, it smashes the current contents with the new value which was supplied.

Figure 11 gives a script for such a cell which uses an array of cells as an acquaintance
vector.

Figure 12 shows a pure (side-effect free) model for a cell. It uses a subsidiary function
“"lookup” which is not part of the cell’s script, but is a meta-function used by the interpreter.

(This is because a script cannot refer to events in the computation, only actors.)

Fig. ll. A Cell Model for a Cell
cell-1: (=> [message: M]
(cases M
(=> [contents? reply-to: C]
activate <C, [acquaintance(8)]>)
(=> [store! x reply-to: C]
acquaintance (@) := x;
activate <C, [done!l>)))

The Pure Model for Actors -79 - Section 2.5.5

Fig. 12. A Pure Model for a Cell

% Initial contents of cell-2 is NIL. %
cell-2: (=> [message: M]
(cases M

(=> [store! x reply-to: C]
activate <C, [done!l>)

(=> [contents? reply-to: C]
activate <C,contents(P)>)))

% P is precursor of this event. %
contents(P) = if P=creation(cell-2)
then NIL
else if message(P)='[store: x reply-to: C]
then x

else |ookup(precursor (P))

- Storage Management and Garbage Collection - 80 - Section 3

3. Storage Management and Garbage Collection

EXODUS 12

22 And ye shall take a bunch of hyssop, and dip it in the blood that is in the

bason, and strike the lintel and the two side posts with the blood that is in the

bason: and none of you shall go out at the door of his house until the morning.

2% For the LORD will pass through to smite the Egyptians; and when he seeth

the biood upon the lintel, and on the two side posts, the LORD will pass over

the door, and will not suffer the destroyer to come in unto your houses to smite

you.

King James Version of the Bible

In this chapter, we consider a problem which arises in the implementation of actor
systems intended for real-time applications. ~This problem is the management of
acquaintance vectors, messages, and the like. Although many ad hoc schemes could be
contrived, we argue that since these objects contain names (= pointers) to other objects, a
more elegant approach would use a garbage-collected heap. But classical garbage collected
heaps have the problem that the allocation routine occasionaily calls the garbage collector,
which takes an amount of time proportional to the size of the heap to finish. During this
hiates, the heap is unavailable to the rest of the system.

The next chapter presents a new heap management algorithm which works
incrementally, by performing a little of the work of garbage collection on every call ta the
storage allocation routine. In this way, the huge variance in the amount of time required to
‘allocate a block of storage is reduced to zero. This algorithm aids in the programming of a
system with hard real-time constraints because the time required to allocate an object and
access its parts is completely predictable.

Because our heap management algorithm is essentially a real-time simulation of a “list

memory” (in the spirit of IPL-V [69] or a LISP machine [29,41,11)) on a "random access

memory”, we will often use the phrase "list memory" instead of "garbage-collected heap”.

Advantages of List Memory over Random Access Memory - 81 - Section 3.1

3.1 Advantages of List Memory over Random Access

Memory

The question arises as to why we go to so much effort to simulate a list memory on an
automaton with a random access memory. After all, with a random access memory, one can
access any memory cell in the address space in unit time, whereas one must trace lists to
access most of the memory cells of a list memory.

The answer is that we rarely use the completely random access ability of the RAM.
The actions of a CPU in executing an instruction stream are highly predictable, since most
programs consist of lists of instructions with a few conditional and unconditional branches
thrown in; in other words, most programs are list structure themselves! The run time
systems of higher level languages include stack structured or tree structured variable
binding environments which again do not make full use of the random access abilities of
the memory.

In fact, the only two constructs that do make essential use of the random access
property of the memory are FORTRAN-style arrays of memory cells! and hash tables.
However, even in applications which use arrays, we often see more structure than a simple
one-to-one mapping of indices to memory cells. If the arrays are multidimensional, many
systems store them as vectors of addresses to other vectors--i.e. multilevel structures. If the
arrays are sparse, they are sometimes stored as doubly-linked list structures or in hash
tables, either to speed up processing or reduce storage, or both. Even arrays without such
sophisticated structure are usually processed in row or column order, and rarely are accesses
made to random array elements. In fact, most arrays which are not scanned linearly are
being used to simulate list structure! Thus even array structures, for which random access

memory should be ideal, do not normally take advantage of random accessing.

I. The semantics of an array require that adjacent elements of an array occupy adjacent
storage locations so that a probe of a random element in the array takes approximately O(l),
regardless of the size of the array.

Advantages of List Memory over Random Access Memory - 82 - Section 3.1

Hash tables, which simulate an associative memory by interpreting a key--suitably
transformed--as an index to memory, make the most important use of the random accessing
ability of these memories. However, even this use is limited, since most hash table
algorithms do a linear search of the bucket which is chosen by hashing. It is also difficult
to extend hash tables, because doing so requires copying and rehashing every element of the
table to a new, larger table according to a new hashing function.2 This brings us to the
primary problem of random accessed memory--it is extremely hard to reorganize and
re-allocate memory because much data must be physically moved, and this movement is
expensive.

List memory, on the other hand, satisfies a substitution property which has both a
stronger and a weaker form. The stronger form of this property states that any single
instance of a list node or atom in a list structure can be replaced by another piece of list
structure or an atom, with only a minor, local change to the list memory. This substitution
requires only a constant amount of time if the instance to be substituted for is already
known and the change is to be permanem.3 These substitutions furthermore do not affect
the access paths to the nodes of the memory which have.not been substituted for; hence
there is much less need for synchronization among multiple processes making structural
changes to a list memory than among multiple processes moving data around in a random
access memory.

This substitution property is related to the phrase structure property of higher level
languages such as Algol or LISP, where a whole subexpression can also appear in most
contexts in which a constant or variable can appear. This feature contrasted with early
FORTRAN experience which allowed full expressions in only a few contexts. The free
substitution of an expression in contexts where constants or variables are allowed is also

called referential transparency and is an artifact of the evaluation of expressions in those

2. This can be done incrementally, as the next chapter indicates.
3. A whole list can also be substituted for one of its own sublists, thus generating a
directed loop in the structure of the list memory.

Advantages of List Memory over Random Access Memory - 83 - Section 3.1

contexts only for the purpose of the value they produce, not the side-effects they cause. (To
the extent that languages allow side-effects of expressions, they violate the principle of
referential transparency.) This substitution property also operates in context-free languages,
wherein a non-terminal generates the same sublanguage, regardless of the surrounding
context.

The substitution property works in all these systems because they are based on tree
and graph structures rather than on linear strings and vectors. A (ree may sprout new
branches from any limb without disturbing the other branches, but inserting new elements
in the middle of a string or a vector will affect all accesses to the elements after the inserted
part, because they are now further from the beginning (or the end) of the string.

The weaker sense of the substitution property preserves the conceptual idea of subtree
replacement, but instead of making a permanent change in the list memory structure,
enough of the main tree is copied with the new subtree replacing the old subtree such that
the new tree "looks like" the old one, except for the substituted subtree. The conceptual
sense of substitution is retained, because each subtree except for the one replaced can still be
accessed in the new tree via the same access path that it had in the old one. However,
because every node on the access path from the root of the new tree to the substituted
subtree is a newly created node, the change is not local and the time to perform the
operation is not bounded. However, in most cases the depth of the tree will be only
O(log N), where N is the total number of nodes in the tree, so that this type of
reorganization is still much cheaper than re-organizing a random access memory, which
would require time O(N).

A pleasant result of the use of the substitution property--either in its strong or weak
form--is that identical subtrees can be shared because list memory allows an arbitrary
directed graph structure. Thus, where the concatenation of strings which are represented
explicitly requires that the strings be copied into a new area of storage, a list memory allows
the representation of a string as the fringe of a tree structure, where some of the subtrees

can be shared with representations of other strings. In such a representation, concatenation

does not require the copying of the constituents, but requires only the formation of a new

anclihd

Advantages of List Memory over Random Access Memory - 84 - Section 3.1

node which points to the two constituent substrings. In actual practise in symbolic
manipulation systems (40,76), such shared representations save a great deal of storage, and if
processing algorithms know of such sharing, they can sometimes save a great deal of time
by considering each shared substructure only once, when it is first encountered by the

algorithm, instead of every time it is encountered.
3.2 Allocation Problems of Random Access Storage

Computational complexity theorists have made great strides in the past ten years in
identifying and proving ‘certain tasks and problems "hard”. While what constitutes a "hard”
problem may vary somewhat depending upon your patience and budget, nearly everyone
agrees that if the time or space required to compute the answer goes up at least
exponentially with the size of the input parameters, then the problem is hard. Now there is
a class of problems called N P-complete problems which have not yet been proved to require
exponential behavior on the standard deterministic serial computer, but for which all
existing algorithms are exponential. One of the largest subclasses of the NP-complete class
consists of allocation and scheduling problems, which for our purposes refer to storage and
time allocation. In fact, almost all allocation and scheduling problems which involve
discrete sizes and times are "hard" problems [90,24).

A real-time system requires response delays to stimuli which are guaranteed to be
within specified tolerances. The resources required for such a response vary with the
current stimulus and the history of preceding stimuli. Two of the most important of those
resources are storage cells and processor cycles. Optimal scheduling of either storage cells or
processor cycles alone is an NP-complete packing problem, and scheduling them both
together is a two-dimensional packing problem which is surely just as hard. Now if we also
raquire that allocated storage may not be moved between the time it is allocated and the
tizne it is released, then we must also try to minimize storage fragmentation, wherein a

stgnificant amount of free storage becomes unusable because it is spread throughout the

address space in little pieces, none of which is large enough to be usable.

Allocation Problems of Random Access Storage - 85 - Section 3.2

Many designers ignore the fragmentation problem and live with nailed-down storage
by giving fixed allocation to all the tables that the system needs and planning very carefully
the sizes of the tables. However, this leads to systems which are not robust, which break
down when .faced with a situation slightly different from that envisioned by the system
designers. These systems break down with a message indicating that some obscure table
has overflowed and in many cases the problem is uncorrectable because the table sizes
cannot be changed. However, even if the system designer wanted to design a fail-soft
system--i.e. one which would fail totally only when all resources were uniformly
exhausted--he would find it very hard to do so and still stay within the real-time
requirements of his application, because of the large amount of copying involved in the
reorganization of random access storage.

Enter the list memory and our real-time simulation of it on a random access memory.
Using this scheme, the system designer can solve his problems with a much more flexible
memory paradigm than the random access memory. He can design his system with a list
memory having a conceptually infinite number of cells, which are all interchangeable, and
hence only the total number required would matter, not the order in which they were used.
Furthermore, so long as the total number of accessible cells remains less than the maximum
allowed by the memory, he need not worry about the memory becoming fragmented
through combinations of allocations and deletions. If his cell requirements grew by a factor
of 10 or 10 million, he need not change one bit of his program, since there are no addresses
stored and hence no address space limitations.¥ With current hardware (real) address spaces
growing by approximately one bit per year, he need not worry that his program will become

obsolete in only a few years.

4. A user program need never know that actual size of a list memory pointer, since the
program will never deal with one directly, but only through commands which change the
state of a root. Therefore, the program is unaffected by a change in pointer size.

; J

Allocation Problems of Random Access Storage - 86 - Section 3.2

The list memory eliminates the problem of fragmentation and table growth, thus
reducing the allocation constraints under which real-time systems must operate. The
scheduling of time in these systems remains hard, since real-time systems continue to be at
the mercy of their stimuli, but at least we will have given them better control over their own
internal storage.

Although we show how a serial computer can do list processing in real time, no
current state-of-the art computer is entirely serial. Most have hardware interrupt
capabilities and external hardware DM A (direct memory access) /O devices. DM A devices
cause trouble since they ignore the list structure that the system is imposing upon the
memory and require that their buffers be nailed down for the duration of the DMA
transfer. This lacuna can only be fixed by making the DMA device respect the list
structure of the memory.

A system using DM A devices is made most modular by using a separate processor as a
memory controller which handles access requests from both the CPU and DM A devices and
hence preserves the appearance of the memory as a list memory to all the world. Within
the next few years, there will be room on a silicon chip to implement both a controller and a
large number of memory cells to create a true "list memory chip”. Since non-standard

memory chips such as FIFO (first-in, first-out) chips are becoming available, why not truly

useful devices like list memory chips?

List Processing in Real Time -87- Section 4

4. List Processing in Real Time

In this chapter,l we present and analyze carefully our method for incremental garbage
collection. Although presented here in the terminology of LISP, the algorithm works
perfectly well for SIMULA class objects [27,152) and CLU cluster objects [61). More to the
point, the algorithm is perfect for the small acquaintance arrays encountered in an actor
implementation.

A real-time list processing system is one in which the time required by the elementary
list operations (e.g. CONS, CAR, CDR, RPLACA, RPLACD, EQ, and ATOM in LISP) is
bounded by a (small) constant. Classical implementations of list processing systems lack this
property because allocating a list cell from the heap may cause a garbage collection, which
process requires time proportional to the heap size to finish.

A real-time list processing system is presented which continuously reclaims garbage,
including directed cycles, while linearizing and compacting the accessible cells into
contiguous locations to avoid fragmenting the free storage pool. The program is small and
requires no time-sharing interrupts, making it suitable for micro-code. Finally, the system
requires the same average time, and not more than twice the space, of a classical
non-copying implementation, and those space requirements can be reduced to approximately
classical proportions by compact list representation.

Arrays of different sizes, a program stack, and hash linking are simple extensions to

our system, and reference counting is found to be inferior for many applications.

. This chapter is essentially the same as the paper "List Processing in Real Time on a
Serial Computer” [5].

Introduction and Previous Work - 88 - Section 4.1
4.1 Introduction and Previous Work

List processing systems such as LISP [64] have slowly gained popularity over the years
in spite of some rather severe handicaps. First, they usually interpreted their programs
instead of compiling them, thus increasing their running time by several orders of
magnitude. Second, the storage structures used in such systems were inefficient in the use of
storage; for example, compiling a program sometimes halved the amount of storage it
occupied. Third, processing had to be halted periodically to reclaim storage by a long
process known as garbage collection, which laboriously traced and marked every accessible
cell so that those inaccessible cells conld be recycled.

That such inefficiencies were tolerated for so long is a tribute to the elegance and
productivity gained by programming in these languages. These languages freed the
programmer from a primary concern: storage management. The programmer had only to call
CONS (or its equivalent) to obtain a pointer to a fresh storage block; even better, the
‘programmer had only to relinquish all copies of the pointer and the storage block would
automatically be reclaimed by the tireless garbage collector. The programmer no longer
had to worry about prematurely freeing a block of storage which was still in use by another
part of the system.

The first problem was solved with the advent of good compilers [67,88] and new
languages such as SIMULA especially designed for efficient compilation [27,152). The
second was also solved to some extent by those same compilers because the user programs
could be removed from the list storage area and freed from its inefficient constraints on
representation.2 Other techniques such as compact list representation ("CDR-coding”)

(41,11,22] have been proposed which also offer partial solutions to this problem.

2. In many cases, a rarely used program is compiled not to save time in its execution, but
to save garbage-collected storage space.

Introduction and Previous Work -89 - Section 4.1

This chapter presents a solution to the third problem of classical list processing
techniques and removes that roadblock to their more general use. Using the method given
here, a computer could have list processing primitives built in as machine instructions and
the programmer would still be assured that each instruction would finish in a reasonable
amount of time. For example, the interrupt handler for a keyboard could store its
characters on the same kinds of lists--and in the same storage area--as the lists of the main
program. Since there would be no long wait for a garbage collection, response time could be
guaranteed to be small. Even an operating system could use these primitives to manipulate
its burgeoning databases. Business database designers no longer need shy away from
pointer-based systems, for fear that their systems will be impacted by a week-long garbage
collection! As memory is becoming cheaper?’. even microcomputers could be built having
these primitives, so that the prospect of controlling one’s kitchen stove with LISP is not so
far-fetched.

A real-time list processing system has the property that the time required by each of
the elementary operations is bounded by a constant independent of the number of cells in
use. This property does not guarantee that the constant will be small enough for a
particular application on a particular computer, and hence has been called
“pseudo-real-time” by some. However, since we are presenting the system independent of a
particular computer and application, it is the most that can be said. In all but the most
demanding applications, the proper choice of hardware can reduce the constants to
acceptable values.

Except where explicitly stated, we will assume the classical Von Neumann serial
computer architecture with real memory in this chapter. This model consists of a memory,
i.e. a one-dimensional array of words, each of which is large enough to hold (at least) the
representation of a non-negative integer which is an index into that array; and a central
processing unit, or CPU, which has a small fixed humber of registers the size of a word.

The CPU can perform most operations on a word in a fixed, bounded amount of time.

3. Work is progressing on 10° bit chips.

Introduction and Previous Work -90 - Section 4.1

The only operations we require are load, store, add, subtract, test if zero, and perhaps some
bit-testing. It is hard to find a computer today without these operations.

As simple as these requirements are, they do exclude virtual memory computers. T hese
machines are interesting because they take advantage of the locality of reference effect, i.e.
the non-zero serial correlation of CPU accesses to memory, to reduce the amount of fast
memory in a system without greatly increasing the average access time. However, the time
required to load a particular word from virtual memory into a CPU register is bounded
only by the time to access the slowest memory. Since we are more interested in tight upper
bounds, rather than average performance, this class of machines is excluded.

Since the primary list processing language in use today is LISP, and since most of the
literature uses the LISP paradigm when discussing these problems, we will continue this
tradition and center our discussion around it. Due to its small cells, which consist of 2
pointers apiece, LISP is also a kind of worst case for garbage collection overhead.

There are two fundamental kinds of data in LISP: list cells and atoms. List cells are
ordered pairs consisting of a car and a cdr, while atoms are indecomposable. ATOM(x) is a
predicate which is true if and only if x is an atom (i.e. if and only if x is not a list cell);
EQ(x.y) is a predicate which is true if and only if x and y are the same object; CAR(x) and
CDR(x) return the car and cdr components of the list cell x, respectively; CONS(x,y) returns
a new (not EQ to any other accessible list cell) list cell whose car is initially x and whose cdr
is initially y; RPLACA(x,y) and RPLACD(x,y) store y into the car and cdr of x, respectively.
We assume here that these seven primitives are the only ones which can access or change
the representation of a list cell.

There have been several attempts to tackle the problem of real time list processing.
Knuth [57, p. 422] credits Minsky as the first to consider the problem, and sketches a
multiprogramming solution in which the garbage collector shares time with the main list
processing program. Steele’s [80] was the first in a flurry of papers about multiprocessing
garbage collection which included contributions by Dijkstra [31,32) and Lamport [58,59).
Muller [68] independently detailed the Minsky-Knuth-Steele method, and both he and

Wadler [93] analyzed the time and storage required to make it work.

Introduction and Previous Work -9] - Section 4.1

The Minsky-Knuth-Steele-Muller-Wadler (MKSMW) method for real-time garbage
c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>